
How do you simplify \[\dfrac{{{\left( {{x}^{-3}} \right)}^{4}}{{x}^{4}}}{2{{x}^{-3}}}\] and write it using only positive exponents?
Answer
448.5k+ views
Hint: We use cancellation of similar terms to simplify \[\dfrac{{{\left( {{x}^{-3}} \right)}^{4}}{{x}^{4}}}{2{{x}^{-3}}}.\] In an algebraic fraction, like arithmetic fraction, we consider the power of the variables in both the numerator and the denominator. After cutting off the similar terms up to the same power from the numerator and the denominator, the rest of the terms will remain as they are. Remember \[{{x}^{-n}}=\dfrac{1}{{{x}^{n}}}.\] Apply this to make the fraction only of positive exponents. Also remember \[{{\left( \dfrac{1}{x} \right)}^{n}}=\dfrac{1}{{{x}^{n}}}.\] Furthermore, \[{{\left( \dfrac{1}{{{x}^{n}}} \right)}^{m}}=\dfrac{1}{{{\left( {{x}^{n}} \right)}^{m}}}=\dfrac{1}{{{x}^{nm}}}.\] Recall that we have learnt \[{{x}^{n}}.{{x}^{m}}={{x}^{n+m}}.\] \[\]
Complete step by step solution:
Consider the algebraic fraction \[\dfrac{{{\left( {{x}^{-3}} \right)}^{4}}{{x}^{4}}}{2{{x}^{-3}}}.\]
We have to cut off the similar terms from the numerator and the denominator.
We have \[{{x}^{-3}}\] in both the numerator and the denominator.
So, \[\dfrac{{{({{x}^{-3}})}^{4}}{{x}^{4}}}{2{{x}^{-3}}}=\dfrac{{{x}^{-3}}.{{x}^{-3}}.{{x}^{-3}}.{{x}^{-3}}.{{x}^{4}}}{2{{x}^{-3}}}\]
\[=\dfrac{{{x}^{-3}}.{{x}^{-3}}.{{x}^{-3}}.{{x}^{4}}}{2},\] after cancelling \[{{x}^{-3}}\] from both the numerator and the denominator.
Now we get the equation as, \[\dfrac{{{({{x}^{-3}})}^{4}}{{x}^{4}}}{2{{x}^{-3}}}=\dfrac{{{({{x}^{-3}})}^{3}}{{x}^{4}}}{2}\]
We apply the identity, ${{\left( {{x}^{-m}} \right)}^{n}}={{x}^{-mn}}$
So, this can be written as \[\dfrac{{{({{x}^{-3}})}^{4}}{{x}^{4}}}{2{{x}^{-3}}}=\dfrac{({{x}^{-9}}){{x}^{4}}}{2}\]
Again, we use another identity, ${{x}^{-m}}{{x}^{n}}={{x}^{-m+n}}$
Now we get,
$\Rightarrow \dfrac{{{\left( {{x}^{-3}} \right)}^{4}}{{x}^{4}}}{2{{x}^{-3}}}=\dfrac{{{x}^{-9+4}}}{2}=\dfrac{{{x}^{-5}}}{2}$
The simplified form of the given algebraic fraction \[\dfrac{{{({{x}^{-3}})}^{4}}{{x}^{4}}}{2{{x}^{-3}}}=\dfrac{{{x}^{-5}}}{2}.\]
Now we have to write it using only positive exponents.
We can write, \[\dfrac{{{({{x}^{-3}})}^{4}}{{x}^{4}}}{2{{x}^{-3}}}=\dfrac{{{x}^{-5}}}{2}=\dfrac{\left( \dfrac{1}{{{x}^{5}}} \right)}{2}=\dfrac{1}{2}\dfrac{1}{{{x}^{5}}}=\dfrac{1}{2{{x}^{5}}}\]
Hence, we get \[\dfrac{{{({{x}^{-3}})}^{4}}{{x}^{4}}}{2{{x}^{-3}}}=\dfrac{1}{2{{x}^{5}}}.\]
Note: We cancel the terms only if it's multiplied with \[1\] or any other terms in both the numerator and the denominator. We are not allowed to do the cancellation of terms if the terms in the numerator or denominator are added to or subtracted from other terms (same variable or different variables) in the numerator or the denominator.
This can also be done in another way:
\[\dfrac{{{\left( {{x}^{-3}} \right)}^{4}}{{x}^{4}}}{2{{x}^{-3}}}=\dfrac{{{\left( \dfrac{1}{{{x}^{3}}} \right)}^{4}}{{x}^{4}}}{2\dfrac{1}{{{x}^{3}}}}=\dfrac{\dfrac{1}{{{\left( {{x}^{3}} \right)}^{4}}}{{x}^{4}}}{2\dfrac{1}{{{x}^{3}}}}=\dfrac{\dfrac{1}{{{x}^{12}}}{{x}^{4}}}{2\dfrac{1}{{{x}^{3}}}}\]
\[=\dfrac{\dfrac{1}{{{x}^{12-4}}}}{2\dfrac{1}{{{x}^{3}}}},\] \[\left[ \dfrac{1}{{{x}^{n}}}{{x}^{m}}=\dfrac{1}{{{x}^{n-m}}} \right]\] \[\]
\[=\dfrac{\dfrac{1}{{{x}^{8}}}}{2\dfrac{1}{{{x}^{3}}}}=\dfrac{{{\left( \dfrac{1}{x} \right)}^{8}}}{2{{\left( \dfrac{1}{x} \right)}^{3}}}=\dfrac{\dfrac{1}{x}\dfrac{1}{x}\dfrac{1}{x}\dfrac{1}{x}\dfrac{1}{x}\dfrac{1}{x}\dfrac{1}{x}\dfrac{1}{x}}{2\dfrac{1}{x}\dfrac{1}{x}\dfrac{1}{x}}\]
Cancelling \[\dfrac{1}{x}\dfrac{1}{x}\dfrac{1}{x}\],
\[=\dfrac{\dfrac{1}{x}\dfrac{1}{x}\dfrac{1}{x}\dfrac{1}{x}\dfrac{1}{x}}{2}=\dfrac{{{\left( \dfrac{1}{x} \right)}^{5}}}{2}=\dfrac{\dfrac{1}{{{x}^{5}}}}{2}=\dfrac{1}{2}\dfrac{1}{{{x}^{5}}}=\dfrac{1}{2{{x}^{5}}}.\]
Complete step by step solution:
Consider the algebraic fraction \[\dfrac{{{\left( {{x}^{-3}} \right)}^{4}}{{x}^{4}}}{2{{x}^{-3}}}.\]
We have to cut off the similar terms from the numerator and the denominator.
We have \[{{x}^{-3}}\] in both the numerator and the denominator.
So, \[\dfrac{{{({{x}^{-3}})}^{4}}{{x}^{4}}}{2{{x}^{-3}}}=\dfrac{{{x}^{-3}}.{{x}^{-3}}.{{x}^{-3}}.{{x}^{-3}}.{{x}^{4}}}{2{{x}^{-3}}}\]
\[=\dfrac{{{x}^{-3}}.{{x}^{-3}}.{{x}^{-3}}.{{x}^{4}}}{2},\] after cancelling \[{{x}^{-3}}\] from both the numerator and the denominator.
Now we get the equation as, \[\dfrac{{{({{x}^{-3}})}^{4}}{{x}^{4}}}{2{{x}^{-3}}}=\dfrac{{{({{x}^{-3}})}^{3}}{{x}^{4}}}{2}\]
We apply the identity, ${{\left( {{x}^{-m}} \right)}^{n}}={{x}^{-mn}}$
So, this can be written as \[\dfrac{{{({{x}^{-3}})}^{4}}{{x}^{4}}}{2{{x}^{-3}}}=\dfrac{({{x}^{-9}}){{x}^{4}}}{2}\]
Again, we use another identity, ${{x}^{-m}}{{x}^{n}}={{x}^{-m+n}}$
Now we get,
$\Rightarrow \dfrac{{{\left( {{x}^{-3}} \right)}^{4}}{{x}^{4}}}{2{{x}^{-3}}}=\dfrac{{{x}^{-9+4}}}{2}=\dfrac{{{x}^{-5}}}{2}$
The simplified form of the given algebraic fraction \[\dfrac{{{({{x}^{-3}})}^{4}}{{x}^{4}}}{2{{x}^{-3}}}=\dfrac{{{x}^{-5}}}{2}.\]
Now we have to write it using only positive exponents.
We can write, \[\dfrac{{{({{x}^{-3}})}^{4}}{{x}^{4}}}{2{{x}^{-3}}}=\dfrac{{{x}^{-5}}}{2}=\dfrac{\left( \dfrac{1}{{{x}^{5}}} \right)}{2}=\dfrac{1}{2}\dfrac{1}{{{x}^{5}}}=\dfrac{1}{2{{x}^{5}}}\]
Hence, we get \[\dfrac{{{({{x}^{-3}})}^{4}}{{x}^{4}}}{2{{x}^{-3}}}=\dfrac{1}{2{{x}^{5}}}.\]
Note: We cancel the terms only if it's multiplied with \[1\] or any other terms in both the numerator and the denominator. We are not allowed to do the cancellation of terms if the terms in the numerator or denominator are added to or subtracted from other terms (same variable or different variables) in the numerator or the denominator.
This can also be done in another way:
\[\dfrac{{{\left( {{x}^{-3}} \right)}^{4}}{{x}^{4}}}{2{{x}^{-3}}}=\dfrac{{{\left( \dfrac{1}{{{x}^{3}}} \right)}^{4}}{{x}^{4}}}{2\dfrac{1}{{{x}^{3}}}}=\dfrac{\dfrac{1}{{{\left( {{x}^{3}} \right)}^{4}}}{{x}^{4}}}{2\dfrac{1}{{{x}^{3}}}}=\dfrac{\dfrac{1}{{{x}^{12}}}{{x}^{4}}}{2\dfrac{1}{{{x}^{3}}}}\]
\[=\dfrac{\dfrac{1}{{{x}^{12-4}}}}{2\dfrac{1}{{{x}^{3}}}},\] \[\left[ \dfrac{1}{{{x}^{n}}}{{x}^{m}}=\dfrac{1}{{{x}^{n-m}}} \right]\] \[\]
\[=\dfrac{\dfrac{1}{{{x}^{8}}}}{2\dfrac{1}{{{x}^{3}}}}=\dfrac{{{\left( \dfrac{1}{x} \right)}^{8}}}{2{{\left( \dfrac{1}{x} \right)}^{3}}}=\dfrac{\dfrac{1}{x}\dfrac{1}{x}\dfrac{1}{x}\dfrac{1}{x}\dfrac{1}{x}\dfrac{1}{x}\dfrac{1}{x}\dfrac{1}{x}}{2\dfrac{1}{x}\dfrac{1}{x}\dfrac{1}{x}}\]
Cancelling \[\dfrac{1}{x}\dfrac{1}{x}\dfrac{1}{x}\],
\[=\dfrac{\dfrac{1}{x}\dfrac{1}{x}\dfrac{1}{x}\dfrac{1}{x}\dfrac{1}{x}}{2}=\dfrac{{{\left( \dfrac{1}{x} \right)}^{5}}}{2}=\dfrac{\dfrac{1}{{{x}^{5}}}}{2}=\dfrac{1}{2}\dfrac{1}{{{x}^{5}}}=\dfrac{1}{2{{x}^{5}}}.\]
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Given that HCF 306 657 9 find the LCM 306 657 class 9 maths CBSE

The highest mountain peak in India is A Kanchenjunga class 9 social science CBSE

A piece of wire 20 cm long is bent into the form of class 9 maths CBSE

Difference Between Plant Cell and Animal Cell

What is the difference between Atleast and Atmost in class 9 maths CBSE
