
Simplify: $\dfrac{{{\left( \sin \dfrac{\pi }{8}+i\cos \dfrac{\pi }{8} \right)}^{8}}}{{{\left( \sin \dfrac{\pi }{8}-i\cos \dfrac{\pi }{8} \right)}^{8}}}$
Answer
615.3k+ views
Hint: To simplify the above expression, first multiply and divide by $\left( \sin \dfrac{\pi }{8}+i\cos \dfrac{\pi }{8} \right)$ inside the bracket to change base into real value and then change into Euler form of complex number to further simplify.
Euler form:
${{e}^{i\theta }}=\cos \theta +i\sin \theta $
Complete step-by-step answer:
We know that $\dfrac{{{a}^{n}}}{{{b}^{n}}}={{\left( \dfrac{a}{b} \right)}^{n}}$.
Using this, $\dfrac{{{\left( \sin \dfrac{\pi }{8}+i\cos \dfrac{\pi }{8} \right)}^{8}}}{{{\left( \sin \dfrac{\pi }{8}-i\cos \dfrac{\pi }{8} \right)}^{8}}}={{\left( \dfrac{\sin \dfrac{\pi }{8}+i\cos \dfrac{\pi }{8}}{\sin \dfrac{\pi }{8}-i\cos \dfrac{\pi }{8}} \right)}^{8}}$
Now, multiplying and dividing by $\left( \sin \dfrac{\pi }{8}+i\cos \dfrac{\pi }{8} \right)$ inside the bracket, we will get,
\[\Rightarrow \dfrac{{{\left( \sin \dfrac{\pi }{8}+i\cos \dfrac{\pi }{8} \right)}^{8}}}{{{\left( \sin \dfrac{\pi }{8}-i\cos \dfrac{\pi }{8} \right)}^{8}}}={{\left( \dfrac{\sin \dfrac{\pi }{8}+i\cos \dfrac{\pi }{8}}{\sin \dfrac{\pi }{8}-i\cos \dfrac{\pi }{8}}\times \dfrac{\sin \dfrac{\pi }{8}+i\cos \dfrac{\pi }{8}}{\sin \dfrac{\pi }{8}+i\cos \dfrac{\pi }{8}} \right)}^{8}}\]
Using $\left( a-b \right)\times \left( a+b \right)={{a}^{2}}-{{b}^{2}}$ in the denominator,
$\begin{align}
& ={{\left( \dfrac{{{\left( \sin \dfrac{\pi }{8}+i\cos \dfrac{\pi }{8} \right)}^{2}}}{{{\left( \sin \dfrac{\pi }{8} \right)}^{2}}-{{\left( i\cos \dfrac{\pi }{8} \right)}^{2}}} \right)}^{8}} \\
& ={{\left( \dfrac{{{\left( \sin \dfrac{\pi }{8}+i\cos \dfrac{\pi }{8} \right)}^{2}}}{{{\sin }^{2}}\dfrac{\pi }{8}-\left( -{{\cos }^{2}}\dfrac{\pi }{8} \right)} \right)}^{8}} \\
& ={{\left( \dfrac{{{\left( \sin \dfrac{\pi }{8}+i\cos \dfrac{\pi }{8} \right)}^{2}}}{{{\sin }^{2}}\dfrac{\pi }{8}+{{\cos }^{2}}\dfrac{\pi }{8}} \right)}^{8}} \\
\end{align}$
Using ${{\sin }^{2}}\dfrac{\pi }{8}+{{\cos }^{2}}\dfrac{\pi }{8}=1.\ \ \left( Identity\ {{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1 \right)$
$\Rightarrow \dfrac{{{\left( \sin \dfrac{\pi }{8}+i\cos \dfrac{\pi }{8} \right)}^{8}}}{{{\left( \sin \dfrac{\pi }{8}-i\cos \dfrac{\pi }{8} \right)}^{8}}}={{\left( {{\left( \sin \dfrac{\pi }{8}+i\cos \dfrac{\pi }{8} \right)}^{2}} \right)}^{8}}$
Now, using ${{\left( {{a}^{n}} \right)}^{m}}={{a}^{n\times m}}$
$\Rightarrow \dfrac{{{\left( \sin \dfrac{\pi }{8}+i\cos \dfrac{\pi }{8} \right)}^{8}}}{{{\left( \sin \dfrac{\pi }{8}-i\cos \dfrac{\pi }{8} \right)}^{8}}}={{\left( \sin \dfrac{\pi }{8}+i\cos \dfrac{\pi }{8} \right)}^{16}}..............\left( 1 \right)$
We know, $\cos \left( \dfrac{\pi }{2}-\theta \right)=\sin \theta \ and\ \sin \left( \dfrac{\pi }{2}-\theta \right)=\cos \theta $.
$\begin{align}
& \Rightarrow \sin \dfrac{\pi }{8}=\cos \left( \dfrac{\pi }{2}-\dfrac{\pi }{8} \right)=\cos \dfrac{3\pi }{8} \\
& and\ \cos \dfrac{\pi }{8}=\sin \left( \dfrac{\pi }{2}-\dfrac{\pi }{8} \right)=\sin \dfrac{3\pi }{8} \\
\end{align}$
Using these values of $\sin \dfrac{\pi }{8}$ and $\cos \dfrac{\pi }{8}$ in equation, we get,
$\Rightarrow \dfrac{{{\left( \sin \dfrac{\pi }{8}+i\cos \dfrac{\pi }{8} \right)}^{8}}}{{{\left( \sin \dfrac{\pi }{8}-i\cos \dfrac{\pi }{8} \right)}^{8}}}={{\left[ \cos \dfrac{3\pi }{8}+i\sin \dfrac{3\pi }{8} \right]}^{16}}$
Using Euler form of $\left( \cos \dfrac{3\pi }{8}+i\sin \dfrac{3\pi }{8} \right)$, we will get,
$\begin{align}
& \Rightarrow \dfrac{{{\left( \sin \dfrac{\pi }{8}+i\cos \dfrac{\pi }{8} \right)}^{8}}}{{{\left( \sin \dfrac{\pi }{8}-i\cos \dfrac{\pi }{8} \right)}^{8}}}={{\left( {{e}^{i\left( \dfrac{3\pi }{8} \right)}} \right)}^{16}} \\
& ={{e}^{i\left( \dfrac{3\pi }{8}\times 16 \right)}} \\
& ={{e}^{i\left( \dfrac{3\pi }{2} \right)}} \\
\end{align}$
We know,
$\begin{align}
& {{e}^{i\theta }}=\cos \theta +i\sin \theta \\
& {{e}^{i\dfrac{3\pi }{2}}}=\cos \theta \left( \dfrac{3\pi }{2} \right)+i\sin \left( \dfrac{3\pi }{2}
\right) \\
& =0-i \\
& =-i \\
\end{align}$
Hence, $\dfrac{{{\left( \sin \dfrac{\pi }{8}+i\cos \dfrac{\pi }{8} \right)}^{8}}}{{{\left( \sin \dfrac{\pi }{8}-i\cos \dfrac{\pi }{8} \right)}^{8}}}=-i$
Note: We can also solve this question without using Euler form and by using the identity,
$''{{\left( \cos \theta +i\sin \theta \right)}^{n}}=\cos \left( n\theta \right)+i\sin \left( n\theta \right)''$.
This can be proved using the Euler form of complex numbers.
$\begin{align}
& {{e}^{i\theta }}=\cos \theta +i\sin \left( \theta \right) \\
& {{\left( {{e}^{i\theta }} \right)}^{n}}={{e}^{in\theta }}\cos \left( n\theta \right)+i\sin \left(
n\theta \right) \\
\end{align}$
Euler form:
${{e}^{i\theta }}=\cos \theta +i\sin \theta $
Complete step-by-step answer:
We know that $\dfrac{{{a}^{n}}}{{{b}^{n}}}={{\left( \dfrac{a}{b} \right)}^{n}}$.
Using this, $\dfrac{{{\left( \sin \dfrac{\pi }{8}+i\cos \dfrac{\pi }{8} \right)}^{8}}}{{{\left( \sin \dfrac{\pi }{8}-i\cos \dfrac{\pi }{8} \right)}^{8}}}={{\left( \dfrac{\sin \dfrac{\pi }{8}+i\cos \dfrac{\pi }{8}}{\sin \dfrac{\pi }{8}-i\cos \dfrac{\pi }{8}} \right)}^{8}}$
Now, multiplying and dividing by $\left( \sin \dfrac{\pi }{8}+i\cos \dfrac{\pi }{8} \right)$ inside the bracket, we will get,
\[\Rightarrow \dfrac{{{\left( \sin \dfrac{\pi }{8}+i\cos \dfrac{\pi }{8} \right)}^{8}}}{{{\left( \sin \dfrac{\pi }{8}-i\cos \dfrac{\pi }{8} \right)}^{8}}}={{\left( \dfrac{\sin \dfrac{\pi }{8}+i\cos \dfrac{\pi }{8}}{\sin \dfrac{\pi }{8}-i\cos \dfrac{\pi }{8}}\times \dfrac{\sin \dfrac{\pi }{8}+i\cos \dfrac{\pi }{8}}{\sin \dfrac{\pi }{8}+i\cos \dfrac{\pi }{8}} \right)}^{8}}\]
Using $\left( a-b \right)\times \left( a+b \right)={{a}^{2}}-{{b}^{2}}$ in the denominator,
$\begin{align}
& ={{\left( \dfrac{{{\left( \sin \dfrac{\pi }{8}+i\cos \dfrac{\pi }{8} \right)}^{2}}}{{{\left( \sin \dfrac{\pi }{8} \right)}^{2}}-{{\left( i\cos \dfrac{\pi }{8} \right)}^{2}}} \right)}^{8}} \\
& ={{\left( \dfrac{{{\left( \sin \dfrac{\pi }{8}+i\cos \dfrac{\pi }{8} \right)}^{2}}}{{{\sin }^{2}}\dfrac{\pi }{8}-\left( -{{\cos }^{2}}\dfrac{\pi }{8} \right)} \right)}^{8}} \\
& ={{\left( \dfrac{{{\left( \sin \dfrac{\pi }{8}+i\cos \dfrac{\pi }{8} \right)}^{2}}}{{{\sin }^{2}}\dfrac{\pi }{8}+{{\cos }^{2}}\dfrac{\pi }{8}} \right)}^{8}} \\
\end{align}$
Using ${{\sin }^{2}}\dfrac{\pi }{8}+{{\cos }^{2}}\dfrac{\pi }{8}=1.\ \ \left( Identity\ {{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1 \right)$
$\Rightarrow \dfrac{{{\left( \sin \dfrac{\pi }{8}+i\cos \dfrac{\pi }{8} \right)}^{8}}}{{{\left( \sin \dfrac{\pi }{8}-i\cos \dfrac{\pi }{8} \right)}^{8}}}={{\left( {{\left( \sin \dfrac{\pi }{8}+i\cos \dfrac{\pi }{8} \right)}^{2}} \right)}^{8}}$
Now, using ${{\left( {{a}^{n}} \right)}^{m}}={{a}^{n\times m}}$
$\Rightarrow \dfrac{{{\left( \sin \dfrac{\pi }{8}+i\cos \dfrac{\pi }{8} \right)}^{8}}}{{{\left( \sin \dfrac{\pi }{8}-i\cos \dfrac{\pi }{8} \right)}^{8}}}={{\left( \sin \dfrac{\pi }{8}+i\cos \dfrac{\pi }{8} \right)}^{16}}..............\left( 1 \right)$
We know, $\cos \left( \dfrac{\pi }{2}-\theta \right)=\sin \theta \ and\ \sin \left( \dfrac{\pi }{2}-\theta \right)=\cos \theta $.
$\begin{align}
& \Rightarrow \sin \dfrac{\pi }{8}=\cos \left( \dfrac{\pi }{2}-\dfrac{\pi }{8} \right)=\cos \dfrac{3\pi }{8} \\
& and\ \cos \dfrac{\pi }{8}=\sin \left( \dfrac{\pi }{2}-\dfrac{\pi }{8} \right)=\sin \dfrac{3\pi }{8} \\
\end{align}$
Using these values of $\sin \dfrac{\pi }{8}$ and $\cos \dfrac{\pi }{8}$ in equation, we get,
$\Rightarrow \dfrac{{{\left( \sin \dfrac{\pi }{8}+i\cos \dfrac{\pi }{8} \right)}^{8}}}{{{\left( \sin \dfrac{\pi }{8}-i\cos \dfrac{\pi }{8} \right)}^{8}}}={{\left[ \cos \dfrac{3\pi }{8}+i\sin \dfrac{3\pi }{8} \right]}^{16}}$
Using Euler form of $\left( \cos \dfrac{3\pi }{8}+i\sin \dfrac{3\pi }{8} \right)$, we will get,
$\begin{align}
& \Rightarrow \dfrac{{{\left( \sin \dfrac{\pi }{8}+i\cos \dfrac{\pi }{8} \right)}^{8}}}{{{\left( \sin \dfrac{\pi }{8}-i\cos \dfrac{\pi }{8} \right)}^{8}}}={{\left( {{e}^{i\left( \dfrac{3\pi }{8} \right)}} \right)}^{16}} \\
& ={{e}^{i\left( \dfrac{3\pi }{8}\times 16 \right)}} \\
& ={{e}^{i\left( \dfrac{3\pi }{2} \right)}} \\
\end{align}$
We know,
$\begin{align}
& {{e}^{i\theta }}=\cos \theta +i\sin \theta \\
& {{e}^{i\dfrac{3\pi }{2}}}=\cos \theta \left( \dfrac{3\pi }{2} \right)+i\sin \left( \dfrac{3\pi }{2}
\right) \\
& =0-i \\
& =-i \\
\end{align}$
Hence, $\dfrac{{{\left( \sin \dfrac{\pi }{8}+i\cos \dfrac{\pi }{8} \right)}^{8}}}{{{\left( \sin \dfrac{\pi }{8}-i\cos \dfrac{\pi }{8} \right)}^{8}}}=-i$
Note: We can also solve this question without using Euler form and by using the identity,
$''{{\left( \cos \theta +i\sin \theta \right)}^{n}}=\cos \left( n\theta \right)+i\sin \left( n\theta \right)''$.
This can be proved using the Euler form of complex numbers.
$\begin{align}
& {{e}^{i\theta }}=\cos \theta +i\sin \left( \theta \right) \\
& {{\left( {{e}^{i\theta }} \right)}^{n}}={{e}^{in\theta }}\cos \left( n\theta \right)+i\sin \left(
n\theta \right) \\
\end{align}$
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

The draft of the Preamble of the Indian Constitution class 10 social science CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who gave "Inqilab Zindabad" slogan?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Who is the Brand Ambassador of Incredible India?

