
Simplify $\dfrac{{9 - {x^{ - 2}}}}{{3 + {x^{ - 1}}}}.$
Answer
542.1k+ views
Hint:We know that for a negative exponent ${x^{ - n}} = \dfrac{1}{{{x^n}}}$. So by using this property and the properties of algebraic rational expression we can solve this question.
Complete step by step solution:
Given
$\dfrac{{9 - {x^{ - 2}}}}{{3 + {x^{ - 1}}}}...............................................\left( i \right)$
So in order to solve the above given question we have to convert the numerator and denominator in such a way that we can get common terms in both the numerator and denominator and then cancel it.
For that we have to use the above mentioned property:
${x^{ - n}} = \dfrac{1}{{{x^n}}}$
So by using this property we have to simplify the numerator and denominator first, and then cancel the common terms if any exists.
So simplifying the numerator:
$
\Rightarrow 9 - {x^{ - 2}} = 9 - \dfrac{1}{{{x^2}}} \\
\Rightarrow 9 - {x^{ - 2}} = \dfrac{{9{x^2} - 1}}{{{x^2}}}.......................\left( {ii} \right) \\
$
Now simplifying the denominator:
$
\Rightarrow 3 + {x^{ - 1}} = 3 + \dfrac{1}{x} \\
\Rightarrow 3 + {x^{ - 1}} = \dfrac{{3x + 1}}{x}........................\left( {iii} \right) \\
$
Now substituting (ii) and (iii) in (i) we get:
$
\dfrac{{9 - {x^{ - 2}}}}{{3 + {x^{ - 1}}}} = \dfrac{{\dfrac{{9{x^2} - 1}}{{{x^2}}}}}{{\dfrac{{3x + 1}}{x}}} \\
= \dfrac{{9{x^2} - 1}}{{{x^2}}} \times \dfrac{x}{{3x + 1}}...............\left( {iv} \right) \\
$
On observing (iv) we see that we can simplify $9{x^2} - 1$using the property ${a^2} - {b^2} = \left( {a +
b} \right)\left( {a - b} \right):$
$
9{x^2} - 1 = {\left( {3x} \right)^2} - {1^2} \\
= \left( {3x + 1} \right)\left( {3x - 1} \right).......................\left( v \right) \\
$
Substituting (v) in (iv) we get:
$ \Rightarrow \dfrac{{9{x^2} - 1}}{{{x^2}}} \times \dfrac{x}{{3x + 1}} = \dfrac{{\left( {3x + 1}
\right)\left( {3x - 1} \right)}}{{{x^2}}} \times \dfrac{x}{{3x + 1}}.....................\left( {vi} \right)$
Now on observing (vi) we see that we can cancel the terms$\left( {3x + 1} \right)$ and $x$ since it’s common to both numerator and denominator.
$ \Rightarrow \dfrac{{\left( {3x + 1} \right)\left( {3x - 1} \right)}}{{{x^2}}} \times \dfrac{x}{{3x + 1}} =
\dfrac{{\left( {3x - 1} \right)}}{x}$
$ \Rightarrow \dfrac{{\left( {3x - 1} \right)}}{x} = 3 - \dfrac{1}{x}......................\left( {vii} \right)$
On observing (vi) we can see that it’s not possible to simply it further, therefore we can stop the process of simplification and write:
\[\dfrac{{9 - {x^{ - 2}}}}{{3 + {x^{ - 1}}}} = 3 - \dfrac{1}{x}..................................\left( {viii} \right)\]
i.e. on simplifying $\dfrac{{9 - {x^{ - 2}}}}{{3 + {x^{ - 1}}}}{\kern 1pt} $we get \[3 - \dfrac{1}{x}.\]
Note: While simplifying rational expressions we should see if any general standard identities could be used and if there’s any then we should be able to convert our given expression into that form and then perform other operations which also involves the cancellation of common terms. Also the above given the method is considered suitable and easiest for similar questions containing any polynomial rational expressions.
Complete step by step solution:
Given
$\dfrac{{9 - {x^{ - 2}}}}{{3 + {x^{ - 1}}}}...............................................\left( i \right)$
So in order to solve the above given question we have to convert the numerator and denominator in such a way that we can get common terms in both the numerator and denominator and then cancel it.
For that we have to use the above mentioned property:
${x^{ - n}} = \dfrac{1}{{{x^n}}}$
So by using this property we have to simplify the numerator and denominator first, and then cancel the common terms if any exists.
So simplifying the numerator:
$
\Rightarrow 9 - {x^{ - 2}} = 9 - \dfrac{1}{{{x^2}}} \\
\Rightarrow 9 - {x^{ - 2}} = \dfrac{{9{x^2} - 1}}{{{x^2}}}.......................\left( {ii} \right) \\
$
Now simplifying the denominator:
$
\Rightarrow 3 + {x^{ - 1}} = 3 + \dfrac{1}{x} \\
\Rightarrow 3 + {x^{ - 1}} = \dfrac{{3x + 1}}{x}........................\left( {iii} \right) \\
$
Now substituting (ii) and (iii) in (i) we get:
$
\dfrac{{9 - {x^{ - 2}}}}{{3 + {x^{ - 1}}}} = \dfrac{{\dfrac{{9{x^2} - 1}}{{{x^2}}}}}{{\dfrac{{3x + 1}}{x}}} \\
= \dfrac{{9{x^2} - 1}}{{{x^2}}} \times \dfrac{x}{{3x + 1}}...............\left( {iv} \right) \\
$
On observing (iv) we see that we can simplify $9{x^2} - 1$using the property ${a^2} - {b^2} = \left( {a +
b} \right)\left( {a - b} \right):$
$
9{x^2} - 1 = {\left( {3x} \right)^2} - {1^2} \\
= \left( {3x + 1} \right)\left( {3x - 1} \right).......................\left( v \right) \\
$
Substituting (v) in (iv) we get:
$ \Rightarrow \dfrac{{9{x^2} - 1}}{{{x^2}}} \times \dfrac{x}{{3x + 1}} = \dfrac{{\left( {3x + 1}
\right)\left( {3x - 1} \right)}}{{{x^2}}} \times \dfrac{x}{{3x + 1}}.....................\left( {vi} \right)$
Now on observing (vi) we see that we can cancel the terms$\left( {3x + 1} \right)$ and $x$ since it’s common to both numerator and denominator.
$ \Rightarrow \dfrac{{\left( {3x + 1} \right)\left( {3x - 1} \right)}}{{{x^2}}} \times \dfrac{x}{{3x + 1}} =
\dfrac{{\left( {3x - 1} \right)}}{x}$
$ \Rightarrow \dfrac{{\left( {3x - 1} \right)}}{x} = 3 - \dfrac{1}{x}......................\left( {vii} \right)$
On observing (vi) we can see that it’s not possible to simply it further, therefore we can stop the process of simplification and write:
\[\dfrac{{9 - {x^{ - 2}}}}{{3 + {x^{ - 1}}}} = 3 - \dfrac{1}{x}..................................\left( {viii} \right)\]
i.e. on simplifying $\dfrac{{9 - {x^{ - 2}}}}{{3 + {x^{ - 1}}}}{\kern 1pt} $we get \[3 - \dfrac{1}{x}.\]
Note: While simplifying rational expressions we should see if any general standard identities could be used and if there’s any then we should be able to convert our given expression into that form and then perform other operations which also involves the cancellation of common terms. Also the above given the method is considered suitable and easiest for similar questions containing any polynomial rational expressions.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

