Answer
Verified
400.8k+ views
Hint: We will multiply numerator and denominator by the complement complex number of \[4 + 5i\] and then simplify the above iteration. Finally we get the required answer.
Complete Step by Step Solution:
The given expression is \[\dfrac{{7 + 2i}}{{4 + 5i}}.\]
Now, we will multiply numerator and denominator by \[(4 - 5i)\].
By doing it, we get:
\[ \Rightarrow \dfrac{{(7 + 2i) \times (4 - 5i)}}{{(4 + 5i) \times (4 - 5i)}}\].
Now, by using the formula, we can write the denominator as following way:
\[ \Rightarrow \dfrac{{(7 + 2i) \times (4 - 5i)}}{{{{(4)}^2} - {{(5i)}^2}}}\].
Now, by doing further simplification, we get:
\[ \Rightarrow \dfrac{{(7 + 2i) \times (4 - 5i)}}{{16 - (25 \times - 1)}},\;as\;{i^2} = - 1.\]
By doing further simplification:
\[ \Rightarrow \dfrac{{(7 + 2i) \times (4 - 5i)}}{{16 + 25}}\]
\[ \Rightarrow \dfrac{{(7 + 2i) \times (4 - 5i)}}{{41}}....................(1)\]
Now, calculate the numerator part only, we get:
\[ \Rightarrow (7 + 2i) \times (4 - 5i)\]
\[ \Rightarrow (7 + 2i) \times 4 - (7 + 2i) \times 5i\].
Using multiplication, we get:
\[ \Rightarrow (28 + 8i) - (35i + 10{i^2})\].
Now, using algebraic calculations and putting the value of \[{i^2} = - 1\], we get:
\[ \Rightarrow (28 + 8i) - (35i - 10)\]
\[ \Rightarrow 28 + 8i - 35i - 10\].
Now, by doing further simplification:
\[ \Rightarrow (18 - 27i)\].
Now, putting the value of numerator of \[(18 - 27i)\] in the iteration \[(1)\], we get:
\[ \Rightarrow \dfrac{{(18 - 27i)}}{{41}}\].
Therefore, the required answer is \[\dfrac{{(18 - 27i)}}{{41}}\].
Note: Points to remember:
A complex number is expressed as following:
\[X + i.Y\], where \[X\] and \[Y\] are real numbers but the imaginary part of the number is \[i\].
A complex number lies on the imaginary axis in \[X - Y\] plane.
Complete Step by Step Solution:
The given expression is \[\dfrac{{7 + 2i}}{{4 + 5i}}.\]
Now, we will multiply numerator and denominator by \[(4 - 5i)\].
By doing it, we get:
\[ \Rightarrow \dfrac{{(7 + 2i) \times (4 - 5i)}}{{(4 + 5i) \times (4 - 5i)}}\].
Now, by using the formula, we can write the denominator as following way:
\[ \Rightarrow \dfrac{{(7 + 2i) \times (4 - 5i)}}{{{{(4)}^2} - {{(5i)}^2}}}\].
Now, by doing further simplification, we get:
\[ \Rightarrow \dfrac{{(7 + 2i) \times (4 - 5i)}}{{16 - (25 \times - 1)}},\;as\;{i^2} = - 1.\]
By doing further simplification:
\[ \Rightarrow \dfrac{{(7 + 2i) \times (4 - 5i)}}{{16 + 25}}\]
\[ \Rightarrow \dfrac{{(7 + 2i) \times (4 - 5i)}}{{41}}....................(1)\]
Now, calculate the numerator part only, we get:
\[ \Rightarrow (7 + 2i) \times (4 - 5i)\]
\[ \Rightarrow (7 + 2i) \times 4 - (7 + 2i) \times 5i\].
Using multiplication, we get:
\[ \Rightarrow (28 + 8i) - (35i + 10{i^2})\].
Now, using algebraic calculations and putting the value of \[{i^2} = - 1\], we get:
\[ \Rightarrow (28 + 8i) - (35i - 10)\]
\[ \Rightarrow 28 + 8i - 35i - 10\].
Now, by doing further simplification:
\[ \Rightarrow (18 - 27i)\].
Now, putting the value of numerator of \[(18 - 27i)\] in the iteration \[(1)\], we get:
\[ \Rightarrow \dfrac{{(18 - 27i)}}{{41}}\].
Therefore, the required answer is \[\dfrac{{(18 - 27i)}}{{41}}\].
Note: Points to remember:
A complex number is expressed as following:
\[X + i.Y\], where \[X\] and \[Y\] are real numbers but the imaginary part of the number is \[i\].
A complex number lies on the imaginary axis in \[X - Y\] plane.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
A group of fish is known as class 7 english CBSE
The highest dam in India is A Bhakra dam B Tehri dam class 10 social science CBSE
Write all prime numbers between 80 and 100 class 8 maths CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Onam is the main festival of which state A Karnataka class 7 social science CBSE
Who administers the oath of office to the President class 10 social science CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Kolkata port is situated on the banks of river A Ganga class 9 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE