Answer
Verified
426.9k+ views
Hint: We will multiply numerator and denominator by the complement complex number of \[4 + 5i\] and then simplify the above iteration. Finally we get the required answer.
Complete Step by Step Solution:
The given expression is \[\dfrac{{7 + 2i}}{{4 + 5i}}.\]
Now, we will multiply numerator and denominator by \[(4 - 5i)\].
By doing it, we get:
\[ \Rightarrow \dfrac{{(7 + 2i) \times (4 - 5i)}}{{(4 + 5i) \times (4 - 5i)}}\].
Now, by using the formula, we can write the denominator as following way:
\[ \Rightarrow \dfrac{{(7 + 2i) \times (4 - 5i)}}{{{{(4)}^2} - {{(5i)}^2}}}\].
Now, by doing further simplification, we get:
\[ \Rightarrow \dfrac{{(7 + 2i) \times (4 - 5i)}}{{16 - (25 \times - 1)}},\;as\;{i^2} = - 1.\]
By doing further simplification:
\[ \Rightarrow \dfrac{{(7 + 2i) \times (4 - 5i)}}{{16 + 25}}\]
\[ \Rightarrow \dfrac{{(7 + 2i) \times (4 - 5i)}}{{41}}....................(1)\]
Now, calculate the numerator part only, we get:
\[ \Rightarrow (7 + 2i) \times (4 - 5i)\]
\[ \Rightarrow (7 + 2i) \times 4 - (7 + 2i) \times 5i\].
Using multiplication, we get:
\[ \Rightarrow (28 + 8i) - (35i + 10{i^2})\].
Now, using algebraic calculations and putting the value of \[{i^2} = - 1\], we get:
\[ \Rightarrow (28 + 8i) - (35i - 10)\]
\[ \Rightarrow 28 + 8i - 35i - 10\].
Now, by doing further simplification:
\[ \Rightarrow (18 - 27i)\].
Now, putting the value of numerator of \[(18 - 27i)\] in the iteration \[(1)\], we get:
\[ \Rightarrow \dfrac{{(18 - 27i)}}{{41}}\].
Therefore, the required answer is \[\dfrac{{(18 - 27i)}}{{41}}\].
Note: Points to remember:
A complex number is expressed as following:
\[X + i.Y\], where \[X\] and \[Y\] are real numbers but the imaginary part of the number is \[i\].
A complex number lies on the imaginary axis in \[X - Y\] plane.
Complete Step by Step Solution:
The given expression is \[\dfrac{{7 + 2i}}{{4 + 5i}}.\]
Now, we will multiply numerator and denominator by \[(4 - 5i)\].
By doing it, we get:
\[ \Rightarrow \dfrac{{(7 + 2i) \times (4 - 5i)}}{{(4 + 5i) \times (4 - 5i)}}\].
Now, by using the formula, we can write the denominator as following way:
\[ \Rightarrow \dfrac{{(7 + 2i) \times (4 - 5i)}}{{{{(4)}^2} - {{(5i)}^2}}}\].
Now, by doing further simplification, we get:
\[ \Rightarrow \dfrac{{(7 + 2i) \times (4 - 5i)}}{{16 - (25 \times - 1)}},\;as\;{i^2} = - 1.\]
By doing further simplification:
\[ \Rightarrow \dfrac{{(7 + 2i) \times (4 - 5i)}}{{16 + 25}}\]
\[ \Rightarrow \dfrac{{(7 + 2i) \times (4 - 5i)}}{{41}}....................(1)\]
Now, calculate the numerator part only, we get:
\[ \Rightarrow (7 + 2i) \times (4 - 5i)\]
\[ \Rightarrow (7 + 2i) \times 4 - (7 + 2i) \times 5i\].
Using multiplication, we get:
\[ \Rightarrow (28 + 8i) - (35i + 10{i^2})\].
Now, using algebraic calculations and putting the value of \[{i^2} = - 1\], we get:
\[ \Rightarrow (28 + 8i) - (35i - 10)\]
\[ \Rightarrow 28 + 8i - 35i - 10\].
Now, by doing further simplification:
\[ \Rightarrow (18 - 27i)\].
Now, putting the value of numerator of \[(18 - 27i)\] in the iteration \[(1)\], we get:
\[ \Rightarrow \dfrac{{(18 - 27i)}}{{41}}\].
Therefore, the required answer is \[\dfrac{{(18 - 27i)}}{{41}}\].
Note: Points to remember:
A complex number is expressed as following:
\[X + i.Y\], where \[X\] and \[Y\] are real numbers but the imaginary part of the number is \[i\].
A complex number lies on the imaginary axis in \[X - Y\] plane.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Which of the following is the capital of the union class 9 social science CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Name the metals of the coins Tanka Shashgani and Jital class 6 social science CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
10 examples of friction in our daily life