
How do you simplify $\dfrac{{12{m^{ - 4}}{p^2}}}{{ - 15{m^3}{p^{ - 9}}}}$ ?
Answer
531.6k+ views
Hint: To solve the question, first we will rewrite the expression and try to break it in its very simplest form. We will also use the rule for exponents in these given expressions. We will break the expression until it achieves its non-operational state.
Complete step-by-step solution:
First we rewrite the expression as:
$
\Rightarrow (\dfrac{{12}}{{ - 15}})(\dfrac{{{m^{ - 4}}}}{{{m^3}}})(\dfrac{{{p^2}}}{{{p^{ - 9}}}}) \\
\Rightarrow - \dfrac{{3 \times 4}}{{3 \times 5}}(\dfrac{{{m^{ - 4}}}}{{{m^3}}})(\dfrac{{{p^2}}}{{{p^{ - 9}}}}) \\
\Rightarrow - \dfrac{4}{5}(\dfrac{{{m^{ - 4}}}}{{{m^3}}})(\dfrac{{{p^2}}}{{{p^{ - 9}}}}) \\
$
Next, use this rule for exponents to simplify the $m$ terms:
$\dfrac{{{x^a}}}{{{x^b}}} = \dfrac{1}{{{x^{b - a}}}}$
$
\because - \dfrac{4}{5}(\dfrac{{{m^{ - 4}}}}{{{m^3}}})(\dfrac{{{p^2}}}{{{p^{ - 9}}}}) \\
\Rightarrow - \dfrac{4}{5}(\dfrac{1}{{{m^{3 - - 4}}}})(\dfrac{{{p^2}}}{{{p^{ - 9}}}}) \\
\Rightarrow - \dfrac{4}{5}(\dfrac{1}{{{m^{3 + 4}}}})(\dfrac{{{p^2}}}{{{p^{ - 9}}}}) \\
\Rightarrow - \dfrac{4}{5}(\dfrac{1}{{{m^7}}})(\dfrac{{{p^2}}}{{{p^{ - 9}}}}) \\
\Rightarrow - \dfrac{4}{{5{m^7}}}(\dfrac{{{p^2}}}{{{p^{ - 9}}}}) \\
$
Now, use this rule for exponents to simplify the $p$ terms:
$\dfrac{{{x^a}}}{{{x^b}}} = {x^{a - b}}$
$
\because - \dfrac{4}{{5{m^7}}}(\dfrac{{{p^2}}}{{{p^{ - 9}}}}) \\
\Rightarrow - \dfrac{4}{{5{m^7}}}{p^{2 - - 9}} \\
\Rightarrow - \dfrac{4}{{5{m^7}}}{p^{2 + 9}} \\
\Rightarrow - \dfrac{4}{{5{m^7}}}{p^{11}} \\
\Rightarrow - \dfrac{{4{p^{11}}}}{{5{m^7}}} \\
$
Hence, the simplification of $\dfrac{{12{m^{ - 4}}{p^2}}}{{ - 15{m^3}{p^{ - 9}}}}$ is $ - \dfrac{{4{p^{11}}}}{{5{m^7}}}$ .
Note: This leads to another rule for exponents—the Power Rule for Exponents. To simplify a power of a power, you multiply the exponents, keeping the base the same.
Complete step-by-step solution:
First we rewrite the expression as:
$
\Rightarrow (\dfrac{{12}}{{ - 15}})(\dfrac{{{m^{ - 4}}}}{{{m^3}}})(\dfrac{{{p^2}}}{{{p^{ - 9}}}}) \\
\Rightarrow - \dfrac{{3 \times 4}}{{3 \times 5}}(\dfrac{{{m^{ - 4}}}}{{{m^3}}})(\dfrac{{{p^2}}}{{{p^{ - 9}}}}) \\
\Rightarrow - \dfrac{4}{5}(\dfrac{{{m^{ - 4}}}}{{{m^3}}})(\dfrac{{{p^2}}}{{{p^{ - 9}}}}) \\
$
Next, use this rule for exponents to simplify the $m$ terms:
$\dfrac{{{x^a}}}{{{x^b}}} = \dfrac{1}{{{x^{b - a}}}}$
$
\because - \dfrac{4}{5}(\dfrac{{{m^{ - 4}}}}{{{m^3}}})(\dfrac{{{p^2}}}{{{p^{ - 9}}}}) \\
\Rightarrow - \dfrac{4}{5}(\dfrac{1}{{{m^{3 - - 4}}}})(\dfrac{{{p^2}}}{{{p^{ - 9}}}}) \\
\Rightarrow - \dfrac{4}{5}(\dfrac{1}{{{m^{3 + 4}}}})(\dfrac{{{p^2}}}{{{p^{ - 9}}}}) \\
\Rightarrow - \dfrac{4}{5}(\dfrac{1}{{{m^7}}})(\dfrac{{{p^2}}}{{{p^{ - 9}}}}) \\
\Rightarrow - \dfrac{4}{{5{m^7}}}(\dfrac{{{p^2}}}{{{p^{ - 9}}}}) \\
$
Now, use this rule for exponents to simplify the $p$ terms:
$\dfrac{{{x^a}}}{{{x^b}}} = {x^{a - b}}$
$
\because - \dfrac{4}{{5{m^7}}}(\dfrac{{{p^2}}}{{{p^{ - 9}}}}) \\
\Rightarrow - \dfrac{4}{{5{m^7}}}{p^{2 - - 9}} \\
\Rightarrow - \dfrac{4}{{5{m^7}}}{p^{2 + 9}} \\
\Rightarrow - \dfrac{4}{{5{m^7}}}{p^{11}} \\
\Rightarrow - \dfrac{{4{p^{11}}}}{{5{m^7}}} \\
$
Hence, the simplification of $\dfrac{{12{m^{ - 4}}{p^2}}}{{ - 15{m^3}{p^{ - 9}}}}$ is $ - \dfrac{{4{p^{11}}}}{{5{m^7}}}$ .
Note: This leads to another rule for exponents—the Power Rule for Exponents. To simplify a power of a power, you multiply the exponents, keeping the base the same.
Recently Updated Pages
Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Trending doubts
What are gulf countries and why they are called Gulf class 8 social science CBSE

Which place in Tamil Nadu is known as Little Japan class 8 social science CBSE

What are the methods of reducing friction. Explain

Advantages and disadvantages of science

India has the largest road network in the world A First class 8 social science CBSE

Differentiate between the farms in India and the U class 8 social science CBSE


