
How do you simplify $\dfrac{{12{m^{ - 4}}{p^2}}}{{ - 15{m^3}{p^{ - 9}}}}$ ?
Answer
447.6k+ views
Hint: To solve the question, first we will rewrite the expression and try to break it in its very simplest form. We will also use the rule for exponents in these given expressions. We will break the expression until it achieves its non-operational state.
Complete step-by-step solution:
First we rewrite the expression as:
$
\Rightarrow (\dfrac{{12}}{{ - 15}})(\dfrac{{{m^{ - 4}}}}{{{m^3}}})(\dfrac{{{p^2}}}{{{p^{ - 9}}}}) \\
\Rightarrow - \dfrac{{3 \times 4}}{{3 \times 5}}(\dfrac{{{m^{ - 4}}}}{{{m^3}}})(\dfrac{{{p^2}}}{{{p^{ - 9}}}}) \\
\Rightarrow - \dfrac{4}{5}(\dfrac{{{m^{ - 4}}}}{{{m^3}}})(\dfrac{{{p^2}}}{{{p^{ - 9}}}}) \\
$
Next, use this rule for exponents to simplify the $m$ terms:
$\dfrac{{{x^a}}}{{{x^b}}} = \dfrac{1}{{{x^{b - a}}}}$
$
\because - \dfrac{4}{5}(\dfrac{{{m^{ - 4}}}}{{{m^3}}})(\dfrac{{{p^2}}}{{{p^{ - 9}}}}) \\
\Rightarrow - \dfrac{4}{5}(\dfrac{1}{{{m^{3 - - 4}}}})(\dfrac{{{p^2}}}{{{p^{ - 9}}}}) \\
\Rightarrow - \dfrac{4}{5}(\dfrac{1}{{{m^{3 + 4}}}})(\dfrac{{{p^2}}}{{{p^{ - 9}}}}) \\
\Rightarrow - \dfrac{4}{5}(\dfrac{1}{{{m^7}}})(\dfrac{{{p^2}}}{{{p^{ - 9}}}}) \\
\Rightarrow - \dfrac{4}{{5{m^7}}}(\dfrac{{{p^2}}}{{{p^{ - 9}}}}) \\
$
Now, use this rule for exponents to simplify the $p$ terms:
$\dfrac{{{x^a}}}{{{x^b}}} = {x^{a - b}}$
$
\because - \dfrac{4}{{5{m^7}}}(\dfrac{{{p^2}}}{{{p^{ - 9}}}}) \\
\Rightarrow - \dfrac{4}{{5{m^7}}}{p^{2 - - 9}} \\
\Rightarrow - \dfrac{4}{{5{m^7}}}{p^{2 + 9}} \\
\Rightarrow - \dfrac{4}{{5{m^7}}}{p^{11}} \\
\Rightarrow - \dfrac{{4{p^{11}}}}{{5{m^7}}} \\
$
Hence, the simplification of $\dfrac{{12{m^{ - 4}}{p^2}}}{{ - 15{m^3}{p^{ - 9}}}}$ is $ - \dfrac{{4{p^{11}}}}{{5{m^7}}}$ .
Note: This leads to another rule for exponents—the Power Rule for Exponents. To simplify a power of a power, you multiply the exponents, keeping the base the same.
Complete step-by-step solution:
First we rewrite the expression as:
$
\Rightarrow (\dfrac{{12}}{{ - 15}})(\dfrac{{{m^{ - 4}}}}{{{m^3}}})(\dfrac{{{p^2}}}{{{p^{ - 9}}}}) \\
\Rightarrow - \dfrac{{3 \times 4}}{{3 \times 5}}(\dfrac{{{m^{ - 4}}}}{{{m^3}}})(\dfrac{{{p^2}}}{{{p^{ - 9}}}}) \\
\Rightarrow - \dfrac{4}{5}(\dfrac{{{m^{ - 4}}}}{{{m^3}}})(\dfrac{{{p^2}}}{{{p^{ - 9}}}}) \\
$
Next, use this rule for exponents to simplify the $m$ terms:
$\dfrac{{{x^a}}}{{{x^b}}} = \dfrac{1}{{{x^{b - a}}}}$
$
\because - \dfrac{4}{5}(\dfrac{{{m^{ - 4}}}}{{{m^3}}})(\dfrac{{{p^2}}}{{{p^{ - 9}}}}) \\
\Rightarrow - \dfrac{4}{5}(\dfrac{1}{{{m^{3 - - 4}}}})(\dfrac{{{p^2}}}{{{p^{ - 9}}}}) \\
\Rightarrow - \dfrac{4}{5}(\dfrac{1}{{{m^{3 + 4}}}})(\dfrac{{{p^2}}}{{{p^{ - 9}}}}) \\
\Rightarrow - \dfrac{4}{5}(\dfrac{1}{{{m^7}}})(\dfrac{{{p^2}}}{{{p^{ - 9}}}}) \\
\Rightarrow - \dfrac{4}{{5{m^7}}}(\dfrac{{{p^2}}}{{{p^{ - 9}}}}) \\
$
Now, use this rule for exponents to simplify the $p$ terms:
$\dfrac{{{x^a}}}{{{x^b}}} = {x^{a - b}}$
$
\because - \dfrac{4}{{5{m^7}}}(\dfrac{{{p^2}}}{{{p^{ - 9}}}}) \\
\Rightarrow - \dfrac{4}{{5{m^7}}}{p^{2 - - 9}} \\
\Rightarrow - \dfrac{4}{{5{m^7}}}{p^{2 + 9}} \\
\Rightarrow - \dfrac{4}{{5{m^7}}}{p^{11}} \\
\Rightarrow - \dfrac{{4{p^{11}}}}{{5{m^7}}} \\
$
Hence, the simplification of $\dfrac{{12{m^{ - 4}}{p^2}}}{{ - 15{m^3}{p^{ - 9}}}}$ is $ - \dfrac{{4{p^{11}}}}{{5{m^7}}}$ .
Note: This leads to another rule for exponents—the Power Rule for Exponents. To simplify a power of a power, you multiply the exponents, keeping the base the same.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Trending doubts
When Sambhaji Maharaj died a 11 February 1689 b 11 class 8 social science CBSE

How many ounces are in 500 mL class 8 maths CBSE

Advantages and disadvantages of science

1 meter is equal to how many feet class 8 maths CBSE

In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE

What led to the incident of Bloody Sunday in Russia class 8 social science CBSE
