
How do you simplify $ \cos \left( 2{{\sin }^{-1}}x \right) $ ?
Answer
560.4k+ views
Hint: To simplify the above trigonometric expression i.e. $ \cos \left( 2{{\sin }^{-1}}x \right) $ . We are going to assume $ {{\sin }^{-1}}x $ as $ \theta $ and then substitute $ \theta $ in place of $ {{\sin }^{-1}}x $ in the above expression. Now, we have assumed that $ {{\sin }^{-1}}x=\theta $ so we are taking sine on both the sides then we get $ \sin \left( {{\sin }^{-1}}x \right)=\sin \theta $ . After that we are going to use the property that $ \sin \left( {{\sin }^{-1}} \right)=1 $ . Then we get $ x=\sin \theta $ . Now, when we have substituted $ \theta $ in place of $ {{\sin }^{-1}}x $ then the expression will look like $ \cos \left( 2\theta \right) $ . Then we will use the property of $ \cos 2\theta =1-2{{\sin }^{2}}\theta $ and then we will use $ x=\sin \theta $ to further simplify it.
Complete step by step answer:
The trigonometric expression which we have to simplify is as follows:
$\Rightarrow$ $ \cos \left( 2{{\sin }^{-1}}x \right) $
In the above expression, we are assuming $ {{\sin }^{-1}}x=\theta $ and then replace $ {{\sin }^{-1}}x $ by $ \theta $ and we get,
$\Rightarrow$ $ \cos \left( 2\theta \right) $
Now, taking sine on both the sides of $ {{\sin }^{-1}}x=\theta $ we get,
$ \sin \left( {{\sin }^{-1}}x \right)=\sin \theta $
We know that multiplying a number or expression by its inverse will give 1 and the above equation will look like:
$ x=\sin \theta $
We know the trigonometric property that:
$ \cos 2\theta =1-2{{\sin }^{2}}\theta $
Using the above relation in $ \cos \left( 2\theta \right) $ we get,
$ \cos 2\theta =1-2{{\sin }^{2}}\theta $
Now, substituting x in place of $ \sin \theta $ in the above equation we get,
$\Rightarrow$ $ 1-2{{x}^{2}} $
Hence, we have simplified the above trigonometric expression to $ 1-2{{x}^{2}} $ .
Note:
The alternate approach to solve the above problem by assuming $ 2{{\sin }^{-1}}x=\theta $ then taking sine on both the sides and the above equation will look like:
$ \sin \left( 2{{\sin }^{-1}}x \right)=\sin \theta $
In the above, let us take $ {{\sin }^{-1}}x=\phi $ in the above we get,
$ \sin \left( 2\phi \right)=\sin \theta $
We are going to use the identity $ \sin 2\phi =2\sin \phi \cos \phi $ in the above and we get,
$ 2\sin \phi \cos \phi =\sin \theta $
Taking sine on both the sides in $ {{\sin }^{-1}}x=\phi $ we get,
$ \begin{align}
& \sin \left( {{\sin }^{-1}}x \right)=\sin \phi \\
& \Rightarrow x=\sin \phi \\
\end{align} $
We also know the identity that $ \cos \phi =\sqrt{1-{{\sin }^{2}}\phi } $ so substituting $ \sin \phi =x $ in this property we get,
$ \cos \phi =\sqrt{1-{{x}^{2}}} $
Now, substituting the value of $ \sin \phi \And \cos \phi $ that we have solved above in $ 2\sin \phi \cos \phi =\sin \theta $ we get,
$ \sin \theta =2x\sqrt{1-{{x}^{2}}} $
Now, replacing $ 2{{\sin }^{-1}}x=\theta $ in $ \cos \left( 2{{\sin }^{-1}}x \right) $ we get,
$\Rightarrow$ $ \cos \theta =\sqrt{1-{{\sin }^{2}}\theta } $
Using $ \sin \theta =2x\sqrt{1-{{x}^{2}}} $ in the above equation we get,
$ \begin{align}
& \cos \theta =\sqrt{1-{{\left( 2x\sqrt{1-{{x}^{2}}} \right)}^{2}}} \\
& \Rightarrow \cos \theta =\sqrt{1-\left( 4{{x}^{2}}\left( 1-{{x}^{2}} \right) \right)} \\
& \Rightarrow \cos \theta =\sqrt{1-4{{x}^{2}}+4{{x}^{4}}} \\
& \Rightarrow \cos \theta =\sqrt{{{\left( 1-2{{x}^{2}} \right)}^{2}}} \\
& \Rightarrow \cos \theta =1-2{{x}^{2}} \\
\end{align} $
Complete step by step answer:
The trigonometric expression which we have to simplify is as follows:
$\Rightarrow$ $ \cos \left( 2{{\sin }^{-1}}x \right) $
In the above expression, we are assuming $ {{\sin }^{-1}}x=\theta $ and then replace $ {{\sin }^{-1}}x $ by $ \theta $ and we get,
$\Rightarrow$ $ \cos \left( 2\theta \right) $
Now, taking sine on both the sides of $ {{\sin }^{-1}}x=\theta $ we get,
$ \sin \left( {{\sin }^{-1}}x \right)=\sin \theta $
We know that multiplying a number or expression by its inverse will give 1 and the above equation will look like:
$ x=\sin \theta $
We know the trigonometric property that:
$ \cos 2\theta =1-2{{\sin }^{2}}\theta $
Using the above relation in $ \cos \left( 2\theta \right) $ we get,
$ \cos 2\theta =1-2{{\sin }^{2}}\theta $
Now, substituting x in place of $ \sin \theta $ in the above equation we get,
$\Rightarrow$ $ 1-2{{x}^{2}} $
Hence, we have simplified the above trigonometric expression to $ 1-2{{x}^{2}} $ .
Note:
The alternate approach to solve the above problem by assuming $ 2{{\sin }^{-1}}x=\theta $ then taking sine on both the sides and the above equation will look like:
$ \sin \left( 2{{\sin }^{-1}}x \right)=\sin \theta $
In the above, let us take $ {{\sin }^{-1}}x=\phi $ in the above we get,
$ \sin \left( 2\phi \right)=\sin \theta $
We are going to use the identity $ \sin 2\phi =2\sin \phi \cos \phi $ in the above and we get,
$ 2\sin \phi \cos \phi =\sin \theta $
Taking sine on both the sides in $ {{\sin }^{-1}}x=\phi $ we get,
$ \begin{align}
& \sin \left( {{\sin }^{-1}}x \right)=\sin \phi \\
& \Rightarrow x=\sin \phi \\
\end{align} $
We also know the identity that $ \cos \phi =\sqrt{1-{{\sin }^{2}}\phi } $ so substituting $ \sin \phi =x $ in this property we get,
$ \cos \phi =\sqrt{1-{{x}^{2}}} $
Now, substituting the value of $ \sin \phi \And \cos \phi $ that we have solved above in $ 2\sin \phi \cos \phi =\sin \theta $ we get,
$ \sin \theta =2x\sqrt{1-{{x}^{2}}} $
Now, replacing $ 2{{\sin }^{-1}}x=\theta $ in $ \cos \left( 2{{\sin }^{-1}}x \right) $ we get,
$\Rightarrow$ $ \cos \theta =\sqrt{1-{{\sin }^{2}}\theta } $
Using $ \sin \theta =2x\sqrt{1-{{x}^{2}}} $ in the above equation we get,
$ \begin{align}
& \cos \theta =\sqrt{1-{{\left( 2x\sqrt{1-{{x}^{2}}} \right)}^{2}}} \\
& \Rightarrow \cos \theta =\sqrt{1-\left( 4{{x}^{2}}\left( 1-{{x}^{2}} \right) \right)} \\
& \Rightarrow \cos \theta =\sqrt{1-4{{x}^{2}}+4{{x}^{4}}} \\
& \Rightarrow \cos \theta =\sqrt{{{\left( 1-2{{x}^{2}} \right)}^{2}}} \\
& \Rightarrow \cos \theta =1-2{{x}^{2}} \\
\end{align} $
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

The draft of the Preamble of the Indian Constitution class 10 social science CBSE

Who gave "Inqilab Zindabad" slogan?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

