Courses
Courses for Kids
Free study material
Offline Centres
More
Store

# Simplify and write in exponential form: $\dfrac{{{{\left( {{3^2}} \right)}^3} \times {{\left( { - 2} \right)}^5}}}{{{{\left( { - 2} \right)}^3}}}$

Last updated date: 20th Jun 2024
Total views: 387.6k
Views today: 7.87k
Verified
387.6k+ views
Hint: In the given question, we have been given an expression which needs to be simplified. It can be easily done if we know the formula of division of two numbers with equal base but unequal exponent.
Formula Used:
For this question, we are going to use the formula for division of two numbers with equal base but unequal exponent, which is,
$\dfrac{{{a^m}}}{{{a^n}}} = {a^{m - n}}$

$A = \dfrac{{{{\left( {{3^2}} \right)}^3} \times {{\left( { - 2} \right)}^5}}}{{{{\left( { - 2} \right)}^3}}}$
$A = \dfrac{{{{\left( {{3^2}} \right)}^3} \times {{\left( { - 2} \right)}^5}}}{{{{\left( { - 2} \right)}^3}}} = {\left( {{3^2}} \right)^3} \times {\left( { - 2} \right)^{5 - 3}}$
But, we know, ${\left( {{a^n}} \right)^m} = {a^{m \times n}}$ and ${\left( { - a} \right)^{2m}} = {\left( a \right)^{2m}}$
Hence, $A = {\left( {{3^2}} \right)^3} \times {\left( { - 2} \right)^{5 - 3}} = {\left( 3 \right)^{2 \times 3}} \times {\left( { - 2} \right)^2} = {\left( 3 \right)^6} \times {\left( 2 \right)^2}$
So, $\dfrac{{{{\left( {{3^2}} \right)}^3} \times {{\left( { - 2} \right)}^5}}}{{{{\left( { - 2} \right)}^3}}} = {\left( 3 \right)^6} \times {\left( 2 \right)^2}$
So, the correct answer is “ ${\left( 3 \right)^6} \times {\left( 2 \right)^2}$ ”.