
Simplify and find the value of the following expression $\dfrac{\sin 3A-\cos \left( \dfrac{\pi }{2}-A \right)}{\cos A+\cos \left( \pi +3A \right)}$
Answer
528.9k+ views
Hint: We need to find the value of $\dfrac{\sin 3A-\cos \left( \dfrac{\pi }{2}-A \right)}{\cos A+\cos \left( \pi +3A \right)}$ . We start to solve the given question by finding out the value of $\cos \left( \dfrac{\pi }{2}-A \right)\text{ and cos}\left( \pi +3A \right)$ . Then we will simplify the trigonometric expression using trigonometric formulae to get the desired result.
Complete step by step solution:
We are given a trigonometric expression and are asked to simplify it. We will be solving the given question by finding out the values of $\cos \left( \dfrac{\pi }{2}-A \right)\text{, cos}\left( \pi +3A \right)$ and simplifying the expression using formulae of trigonometry.
The angle $\left( \dfrac{\pi }{2}-A \right)$ lies in the ${{1}^{st}}$ quadrant and every trigonometric function is positive in the ${{1}^{st}}$quadrant.
So, the value of $\cos \left( \dfrac{\pi }{2}-A \right)$ is also positive in the ${{1}^{st}}$ quadrant.
The cosine function changes to the sine function when the angle is 90 or 270.
Following the same, we get,
$\Rightarrow \cos \left( \dfrac{\pi }{2}-A \right)=\sin A$
The angle $\left( \pi +3A \right)$ lies in the ${{3}^{rd}}$ quadrant and only tangent, cotangent is positive in the ${{3}^{rd}}$ quadrant.
So, the value of $\cos \left( \pi +3A \right)$ is negative in the ${{3}^{rd}}$ quadrant.
The cosine function remains the same when the angle is 180 or 360.
Following the same, we get,
$\Rightarrow \cos \left( \pi +3A \right)=-\cos 3A$
Now,
$\Rightarrow \dfrac{\sin 3A-\cos \left( \dfrac{\pi }{2}-A \right)}{\cos A+\cos \left( \pi +3A \right)}$
Substituting the values in the given trigonometric expression, we get,
$\Rightarrow \dfrac{\sin 3A-\sin A}{\cos A-\cos 3A}$
From trigonometry, we know that
$\Rightarrow \sin 3A=3\sin A-4{{\sin }^{3}}A$
Substituting the value of sin3A, we get,
$\Rightarrow \dfrac{3\sin A-4{{\sin }^{3}}A-\sin A}{\cos A-\cos 3A}$
From trigonometry, we know that
$\Rightarrow \cos 3A=4{{\cos }^{3}}A-3\cos A$
Substituting the value of cos3A, we get,
$\Rightarrow \dfrac{3\sin A-4{{\sin }^{3}}A-\sin A}{\cos A-\left( 4{{\cos }^{3}}A-3\cos A \right)}$
Multiplying the minus sign in to the brackets, we get,
$\Rightarrow \dfrac{3\sin A-4{{\sin }^{3}}A-\sin A}{\cos A-4{{\cos }^{3}}A+3\cos A}$
Simplifying the above expression, we get,
$\Rightarrow \dfrac{2\sin A-4{{\sin }^{3}}A}{4\cos A-4{{\cos }^{3}}A}$
Taking 2sinA common from the numerator, we get,
$\Rightarrow \dfrac{2\sin A\left( 1-2{{\sin }^{2}}A \right)}{4\cos A-4{{\cos }^{3}}A}$
Taking 4cosA common from the denominator, we get,
$\Rightarrow \dfrac{2\sin A\left( 1-2{{\sin }^{2}}A \right)}{4\cos A\left( 1-{{\cos }^{2}}A \right)}$
Substituting the same, we get,
$\Rightarrow \dfrac{1}{2}\dfrac{\sin A\left( 1-2{{\sin }^{2}}A \right)}{\cos A\left( 1-{{\cos }^{2}}A \right)}$
From trigonometry,
$\Rightarrow 1-2{{\sin }^{2}}A=\cos 2A$
$\Rightarrow 1-{{\cos }^{2}}A={{\sin }^{2}}A$
Substituting the above values, we get,
$\Rightarrow \dfrac{1}{2}\dfrac{\sin A\times \cos 2A}{\cos A\times {{\sin }^{2}}A}$
Simplifying the above expression, we get,
$\Rightarrow \dfrac{\cos 2A}{2\sin A\cos A}$
From trigonometry, we know that $\sin 2A=2\sin A\cos A$
Substituting the same, we get,
$\Rightarrow \dfrac{\cos 2A}{\sin 2A}$
We know that $\dfrac{\cos A}{\sin A}=\cot A$
Following the same,
$\therefore \dfrac{\sin 3A-\cos \left( \dfrac{\pi }{2}-A \right)}{\cos A+\cos \left( \pi +3A \right)}=\cot 2A$
Note: We must remember that the cosine function is positive in the ${{1}^{st}}$ and ${{4}^{th}}$ quadrants and is negative in the ${{2}^{nd}}$ and ${{3}^{rd}}$ quadrants. The cosine function changes to the sine function when the angle is 90 or 270 and remains the same when the angle is 180 or 360.
$\Rightarrow \cos \left( \dfrac{\pi }{2}-\theta \right)=\sin \theta$
$\Rightarrow \cos \left( \pi +\theta \right)=\cos \theta$
Complete step by step solution:
We are given a trigonometric expression and are asked to simplify it. We will be solving the given question by finding out the values of $\cos \left( \dfrac{\pi }{2}-A \right)\text{, cos}\left( \pi +3A \right)$ and simplifying the expression using formulae of trigonometry.
The angle $\left( \dfrac{\pi }{2}-A \right)$ lies in the ${{1}^{st}}$ quadrant and every trigonometric function is positive in the ${{1}^{st}}$quadrant.
So, the value of $\cos \left( \dfrac{\pi }{2}-A \right)$ is also positive in the ${{1}^{st}}$ quadrant.
The cosine function changes to the sine function when the angle is 90 or 270.
Following the same, we get,
$\Rightarrow \cos \left( \dfrac{\pi }{2}-A \right)=\sin A$
The angle $\left( \pi +3A \right)$ lies in the ${{3}^{rd}}$ quadrant and only tangent, cotangent is positive in the ${{3}^{rd}}$ quadrant.
So, the value of $\cos \left( \pi +3A \right)$ is negative in the ${{3}^{rd}}$ quadrant.
The cosine function remains the same when the angle is 180 or 360.
Following the same, we get,
$\Rightarrow \cos \left( \pi +3A \right)=-\cos 3A$
Now,
$\Rightarrow \dfrac{\sin 3A-\cos \left( \dfrac{\pi }{2}-A \right)}{\cos A+\cos \left( \pi +3A \right)}$
Substituting the values in the given trigonometric expression, we get,
$\Rightarrow \dfrac{\sin 3A-\sin A}{\cos A-\cos 3A}$
From trigonometry, we know that
$\Rightarrow \sin 3A=3\sin A-4{{\sin }^{3}}A$
Substituting the value of sin3A, we get,
$\Rightarrow \dfrac{3\sin A-4{{\sin }^{3}}A-\sin A}{\cos A-\cos 3A}$
From trigonometry, we know that
$\Rightarrow \cos 3A=4{{\cos }^{3}}A-3\cos A$
Substituting the value of cos3A, we get,
$\Rightarrow \dfrac{3\sin A-4{{\sin }^{3}}A-\sin A}{\cos A-\left( 4{{\cos }^{3}}A-3\cos A \right)}$
Multiplying the minus sign in to the brackets, we get,
$\Rightarrow \dfrac{3\sin A-4{{\sin }^{3}}A-\sin A}{\cos A-4{{\cos }^{3}}A+3\cos A}$
Simplifying the above expression, we get,
$\Rightarrow \dfrac{2\sin A-4{{\sin }^{3}}A}{4\cos A-4{{\cos }^{3}}A}$
Taking 2sinA common from the numerator, we get,
$\Rightarrow \dfrac{2\sin A\left( 1-2{{\sin }^{2}}A \right)}{4\cos A-4{{\cos }^{3}}A}$
Taking 4cosA common from the denominator, we get,
$\Rightarrow \dfrac{2\sin A\left( 1-2{{\sin }^{2}}A \right)}{4\cos A\left( 1-{{\cos }^{2}}A \right)}$
Substituting the same, we get,
$\Rightarrow \dfrac{1}{2}\dfrac{\sin A\left( 1-2{{\sin }^{2}}A \right)}{\cos A\left( 1-{{\cos }^{2}}A \right)}$
From trigonometry,
$\Rightarrow 1-2{{\sin }^{2}}A=\cos 2A$
$\Rightarrow 1-{{\cos }^{2}}A={{\sin }^{2}}A$
Substituting the above values, we get,
$\Rightarrow \dfrac{1}{2}\dfrac{\sin A\times \cos 2A}{\cos A\times {{\sin }^{2}}A}$
Simplifying the above expression, we get,
$\Rightarrow \dfrac{\cos 2A}{2\sin A\cos A}$
From trigonometry, we know that $\sin 2A=2\sin A\cos A$
Substituting the same, we get,
$\Rightarrow \dfrac{\cos 2A}{\sin 2A}$
We know that $\dfrac{\cos A}{\sin A}=\cot A$
Following the same,
$\therefore \dfrac{\sin 3A-\cos \left( \dfrac{\pi }{2}-A \right)}{\cos A+\cos \left( \pi +3A \right)}=\cot 2A$
Note: We must remember that the cosine function is positive in the ${{1}^{st}}$ and ${{4}^{th}}$ quadrants and is negative in the ${{2}^{nd}}$ and ${{3}^{rd}}$ quadrants. The cosine function changes to the sine function when the angle is 90 or 270 and remains the same when the angle is 180 or 360.
$\Rightarrow \cos \left( \dfrac{\pi }{2}-\theta \right)=\sin \theta$
$\Rightarrow \cos \left( \pi +\theta \right)=\cos \theta$
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

