
Simplify and find the value at $x = - 5$ , $y = 2$ and $a = 7$.
A. $ - x - \left[ {x + \left\{ {x + y - 2x - \left( {x - 2y} \right)} \right\} - y} \right]$
B. $ - {a^2} + \left[ {{a^2} - 4 - \left( {3{a^2} + 2{a^2}} \right)} \right]$
Answer
504.3k+ views
Hint: Simplification is the process of writing the given algebraic expression effectively and most comfortably to understand without affecting the original expression. Moreover, various steps are involved to simplify an expression.
Here, in this question, we need to apply the BODMAS rule (i.e.) we need to calculate the brackets first and then orders, then division or multiplication, and finally we need to add or subtract.
Complete step by step answer:
A. The given expression is $ - x - \left[ {x + \left\{ {x + y - 2x - \left( {x - 2y} \right)} \right\} - y} \right]$
To find The value $x = - 5$ , $y = 2$
We shall substitute the given values in $ - x - \left[ {x + \left\{ {x + y - 2x - \left( {x - 2y} \right)} \right\} - y} \right]$
$ - x - \left[ {x + \left\{ {x + y - 2x - \left( {x - 2y} \right)} \right\} - y} \right] = - \left( { - 5} \right) - \left[ { - 5 + \left\{ { - 5 + 2 - 2\left( { - 5} \right) - \left( {\left( { - 5} \right) - 2 \times 2} \right)} \right\} - 2} \right]$
$ = 5 - \left[ { - 5 + \left\{ { - 5 + 2 + 10 - \left( { - 5 - 4} \right)} \right\} - 2} \right]$
$ = 5 - \left[ { - 5 + \left\{ { - 5 + 2 + 10 - \left( { - 9} \right)} \right\} - 2} \right]$
$ = 5 - \left[ { - 5 + \left\{ { - 5 + 2 + 10 + 9} \right\} - 2} \right]$
$ = 5 - \left[ { - 5 + \left\{ {16} \right\} - 2} \right]$
$ = 5 - \left[ { - 5 + 16 - 2} \right]$
\[ = 5 - 9\]
$ = - 4$
Hence, $ - x - \left[ {x + \left\{ {x + y - 2x - \left( {x - 2y} \right)} \right\} - y} \right] = - 4$ at $x = - 5$,$y = 2$.
B. The given expression is $ - {a^2} + \left[ {{a^2} - 4 - \left( {3{a^2} + 2{a^2}} \right)} \right]$
To find: The value at $a = 7$
We shall substitute the given value in $ - {a^2} + \left[ {{a^2} - 4 - \left( {3{a^2} + 2{a^2}} \right)} \right]$
$ - {a^2} + \left[ {{a^2} - 4 - \left( {3{a^2} + 2{a^2}} \right)} \right] = - {7^2} + \left[ {{7^2} - 4 - \left( {3{{\left( 7 \right)}^2} + 2{{\left( 7 \right)}^2}} \right)} \right]$
$ = - 49 + \left[ {49 - 4 - \left( {3 \times 49 + 2 \times 49} \right)} \right]$
$ = - 49 + \left[ {49 - 4 - \left( {147 + 98} \right)} \right]$
$ = - 49 + \left[ {49 - 4 - 245} \right]$
$ = - 49 - 200$
$ = - 249$
Hence, $ - {a^2} + \left[ {{a^2} - 4 - \left( {3{a^2} + 2{a^2}} \right)} \right] = - 249$ at . $a = 7$
Note: Simplification of an expression is the process of changing the expression effectively without changing the meaning of an expression.
Here, in this question, we need to apply the BODMAS rule (i.e.) we need to calculate the brackets first and then orders, then division or multiplication, and finally we need to add or subtract.
Moreover, various steps are involved to simplify an expression. Some of the steps are listed below:
If the given expression contains like terms, we need to combine them.
Example: $3x + 2x + 4 = 5x + 4$
We need to split an expression into factors (i.e) the process of finding the factors for the given expression.
Example: ${x^2} + 4x + 3 = (x + 3)(x + 1)$
We need to expand an algebraic expression (i.e) we have to remove the respective brackets of an expression.
Example: $3(a + b) = 3a + 3b$.
We need to cancel out the common terms in an expression.
Example: $\dfrac{{{x^2} + 4x + 3}}{{x + 1}} = \dfrac{{(x + 3)(x + 1)}}{{x + 1}}$
$ = x + 3$
Here, in this question, we need to apply the BODMAS rule (i.e.) we need to calculate the brackets first and then orders, then division or multiplication, and finally we need to add or subtract.
Complete step by step answer:
A. The given expression is $ - x - \left[ {x + \left\{ {x + y - 2x - \left( {x - 2y} \right)} \right\} - y} \right]$
To find The value $x = - 5$ , $y = 2$
We shall substitute the given values in $ - x - \left[ {x + \left\{ {x + y - 2x - \left( {x - 2y} \right)} \right\} - y} \right]$
$ - x - \left[ {x + \left\{ {x + y - 2x - \left( {x - 2y} \right)} \right\} - y} \right] = - \left( { - 5} \right) - \left[ { - 5 + \left\{ { - 5 + 2 - 2\left( { - 5} \right) - \left( {\left( { - 5} \right) - 2 \times 2} \right)} \right\} - 2} \right]$
$ = 5 - \left[ { - 5 + \left\{ { - 5 + 2 + 10 - \left( { - 5 - 4} \right)} \right\} - 2} \right]$
$ = 5 - \left[ { - 5 + \left\{ { - 5 + 2 + 10 - \left( { - 9} \right)} \right\} - 2} \right]$
$ = 5 - \left[ { - 5 + \left\{ { - 5 + 2 + 10 + 9} \right\} - 2} \right]$
$ = 5 - \left[ { - 5 + \left\{ {16} \right\} - 2} \right]$
$ = 5 - \left[ { - 5 + 16 - 2} \right]$
\[ = 5 - 9\]
$ = - 4$
Hence, $ - x - \left[ {x + \left\{ {x + y - 2x - \left( {x - 2y} \right)} \right\} - y} \right] = - 4$ at $x = - 5$,$y = 2$.
B. The given expression is $ - {a^2} + \left[ {{a^2} - 4 - \left( {3{a^2} + 2{a^2}} \right)} \right]$
To find: The value at $a = 7$
We shall substitute the given value in $ - {a^2} + \left[ {{a^2} - 4 - \left( {3{a^2} + 2{a^2}} \right)} \right]$
$ - {a^2} + \left[ {{a^2} - 4 - \left( {3{a^2} + 2{a^2}} \right)} \right] = - {7^2} + \left[ {{7^2} - 4 - \left( {3{{\left( 7 \right)}^2} + 2{{\left( 7 \right)}^2}} \right)} \right]$
$ = - 49 + \left[ {49 - 4 - \left( {3 \times 49 + 2 \times 49} \right)} \right]$
$ = - 49 + \left[ {49 - 4 - \left( {147 + 98} \right)} \right]$
$ = - 49 + \left[ {49 - 4 - 245} \right]$
$ = - 49 - 200$
$ = - 249$
Hence, $ - {a^2} + \left[ {{a^2} - 4 - \left( {3{a^2} + 2{a^2}} \right)} \right] = - 249$ at . $a = 7$
Note: Simplification of an expression is the process of changing the expression effectively without changing the meaning of an expression.
Here, in this question, we need to apply the BODMAS rule (i.e.) we need to calculate the brackets first and then orders, then division or multiplication, and finally we need to add or subtract.
Moreover, various steps are involved to simplify an expression. Some of the steps are listed below:
If the given expression contains like terms, we need to combine them.
Example: $3x + 2x + 4 = 5x + 4$
We need to split an expression into factors (i.e) the process of finding the factors for the given expression.
Example: ${x^2} + 4x + 3 = (x + 3)(x + 1)$
We need to expand an algebraic expression (i.e) we have to remove the respective brackets of an expression.
Example: $3(a + b) = 3a + 3b$.
We need to cancel out the common terms in an expression.
Example: $\dfrac{{{x^2} + 4x + 3}}{{x + 1}} = \dfrac{{(x + 3)(x + 1)}}{{x + 1}}$
$ = x + 3$
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
What are the factors of 100 class 7 maths CBSE

The value of 6 more than 7 is A 1 B 1 C 13 D 13 class 7 maths CBSE

Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE

Convert 200 Million dollars in rupees class 7 maths CBSE

AIM To prepare stained temporary mount of onion peel class 7 biology CBSE

Write a letter to the editor of the national daily class 7 english CBSE


