Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store
seo-qna
SearchIcon
banner

Simplify and find the value at $x = - 5$ , $y = 2$ and $a = 7$.
A. $ - x - \left[ {x + \left\{ {x + y - 2x - \left( {x - 2y} \right)} \right\} - y} \right]$
B. $ - {a^2} + \left[ {{a^2} - 4 - \left( {3{a^2} + 2{a^2}} \right)} \right]$

Answer
VerifiedVerified
489.3k+ views
Hint: Simplification is the process of writing the given algebraic expression effectively and most comfortably to understand without affecting the original expression. Moreover, various steps are involved to simplify an expression.
Here, in this question, we need to apply the BODMAS rule (i.e.) we need to calculate the brackets first and then orders, then division or multiplication, and finally we need to add or subtract.

Complete step by step answer:
A. The given expression is $ - x - \left[ {x + \left\{ {x + y - 2x - \left( {x - 2y} \right)} \right\} - y} \right]$
To find The value $x = - 5$ , $y = 2$
We shall substitute the given values in $ - x - \left[ {x + \left\{ {x + y - 2x - \left( {x - 2y} \right)} \right\} - y} \right]$
$ - x - \left[ {x + \left\{ {x + y - 2x - \left( {x - 2y} \right)} \right\} - y} \right] = - \left( { - 5} \right) - \left[ { - 5 + \left\{ { - 5 + 2 - 2\left( { - 5} \right) - \left( {\left( { - 5} \right) - 2 \times 2} \right)} \right\} - 2} \right]$
$ = 5 - \left[ { - 5 + \left\{ { - 5 + 2 + 10 - \left( { - 5 - 4} \right)} \right\} - 2} \right]$
$ = 5 - \left[ { - 5 + \left\{ { - 5 + 2 + 10 - \left( { - 9} \right)} \right\} - 2} \right]$
$ = 5 - \left[ { - 5 + \left\{ { - 5 + 2 + 10 + 9} \right\} - 2} \right]$
$ = 5 - \left[ { - 5 + \left\{ {16} \right\} - 2} \right]$
$ = 5 - \left[ { - 5 + 16 - 2} \right]$
\[ = 5 - 9\]
$ = - 4$
Hence, $ - x - \left[ {x + \left\{ {x + y - 2x - \left( {x - 2y} \right)} \right\} - y} \right] = - 4$ at $x = - 5$,$y = 2$.
B. The given expression is $ - {a^2} + \left[ {{a^2} - 4 - \left( {3{a^2} + 2{a^2}} \right)} \right]$
To find: The value at $a = 7$
We shall substitute the given value in $ - {a^2} + \left[ {{a^2} - 4 - \left( {3{a^2} + 2{a^2}} \right)} \right]$
$ - {a^2} + \left[ {{a^2} - 4 - \left( {3{a^2} + 2{a^2}} \right)} \right] = - {7^2} + \left[ {{7^2} - 4 - \left( {3{{\left( 7 \right)}^2} + 2{{\left( 7 \right)}^2}} \right)} \right]$
$ = - 49 + \left[ {49 - 4 - \left( {3 \times 49 + 2 \times 49} \right)} \right]$
$ = - 49 + \left[ {49 - 4 - \left( {147 + 98} \right)} \right]$
$ = - 49 + \left[ {49 - 4 - 245} \right]$
$ = - 49 - 200$
$ = - 249$
Hence, $ - {a^2} + \left[ {{a^2} - 4 - \left( {3{a^2} + 2{a^2}} \right)} \right] = - 249$ at . $a = 7$

Note: Simplification of an expression is the process of changing the expression effectively without changing the meaning of an expression.
Here, in this question, we need to apply the BODMAS rule (i.e.) we need to calculate the brackets first and then orders, then division or multiplication, and finally we need to add or subtract.
Moreover, various steps are involved to simplify an expression. Some of the steps are listed below:
If the given expression contains like terms, we need to combine them.
Example: $3x + 2x + 4 = 5x + 4$
We need to split an expression into factors (i.e) the process of finding the factors for the given expression.
Example: ${x^2} + 4x + 3 = (x + 3)(x + 1)$
We need to expand an algebraic expression (i.e) we have to remove the respective brackets of an expression.
Example: $3(a + b) = 3a + 3b$.
We need to cancel out the common terms in an expression.
Example: $\dfrac{{{x^2} + 4x + 3}}{{x + 1}} = \dfrac{{(x + 3)(x + 1)}}{{x + 1}}$
$ = x + 3$
WhatsApp Banner