# Simplify and express the result in its simplest form: $\sqrt[3]{24}\div \left( \sqrt[4]{2}.\sqrt[3]{3} \right)$ .

A) $\sqrt[12]{512}$

B) $\sqrt[12]{502}$

C) $\sqrt[12]{256}$

D) $\sqrt[6]{512}$

Answer

Verified

362.7k+ views

Hint: The given question is related to power and indices. Try to recall the formulae related to mathematical operations of numbers in their exponent form.

Complete step-by-step answer:

Before proceeding with the solution, we must know the formulae used to solve the problem.

A) $\sqrt[n]{a}={{a}^{\dfrac{1}{n}}}$

B) $\dfrac{{{a}^{m}}}{{{b}^{m}}}={{\left( \dfrac{a}{b} \right)}^{m}}$

C) $\dfrac{{{a}^{m}}}{{{a}^{n}}}={{a}^{m-n}}$

D) ${{\left( {{a}^{m}} \right)}^{n}}={{a}^{mn}}$

Now, we will use these formulae to solve the question. First, we will express the numbers in their exponent form. We know we can write $\sqrt[n]{a}$ as ${{a}^{\dfrac{1}{n}}}$ . So, we can write $\sqrt[3]{24}$ as ${{24}^{\dfrac{1}{3}}}$ , $\sqrt[4]{2}$ as ${{2}^{\dfrac{1}{4}}}$ and $\sqrt[3]{3}$ as ${{3}^{\dfrac{1}{3}}}$ . So, we can write $\sqrt[3]{24}\div \left( \sqrt[4]{2}.\sqrt[3]{3} \right)$ as ${{24}^{\dfrac{1}{3}}}\div \left( {{2}^{\dfrac{1}{4}}}\times {{3}^{\dfrac{1}{3}}} \right)$.

We can see that the indices of $24$ and $3$ are the same. Also, we know that $\dfrac{{{a}^{m}}}{{{b}^{m}}}={{\left( \dfrac{a}{b} \right)}^{m}}$ . So, ${{24}^{\dfrac{1}{3}}}\div {{3}^{\dfrac{1}{3}}}={{\left( \dfrac{24}{3} \right)}^{\dfrac{1}{3}}}={{8}^{\dfrac{1}{3}}}$ . So, $\sqrt[3]{24}\div \left( \sqrt[4]{2}.\sqrt[3]{3} \right)$ becomes ${{8}^{\dfrac{1}{3}}}\div {{2}^{\dfrac{1}{4}}}$ .

Now, we know that we can write $8$ as ${{2}^{3}}$ . So, we can write ${{8}^{\dfrac{1}{3}}}$ as ${{\left( {{2}^{3}} \right)}^{\dfrac{1}{3}}}=2$ . So, ${{8}^{\dfrac{1}{3}}}\div {{2}^{\dfrac{1}{4}}}$ becomes $2\div {{2}^{\dfrac{1}{4}}}$ . Now, in $2\div {{2}^{\dfrac{1}{4}}}$ , the bases are the same, i.e. $2$ . Also, we know that $\dfrac{{{a}^{m}}}{{{a}^{n}}}={{a}^{m-n}}$. So, $2\div {{2}^{\dfrac{1}{4}}}={{2}^{1-\dfrac{1}{4}}}={{2}^{\dfrac{3}{4}}}$ .

Now, we know that the value of a fraction does not change on multiplying and dividing it by the same number. So, we can write ${{2}^{\dfrac{3}{4}}}$ as ${{2}^{\dfrac{3}{4}\times \dfrac{3}{3}}}={{2}^{\dfrac{9}{12}}}$. We know, ${{a}^{mn}}={{\left( {{a}^{m}} \right)}^{n}}$ . So, we can write \[{{2}^{\dfrac{9}{12}}}\] as \[{{\left( {{2}^{9}} \right)}^{\dfrac{1}{12}}}\].

Now, we know \[{{a}^{m}}=a\times a\times a\times a....m\,times\]. So, ${{2}^{9}}=2\times 2\times 2\times 2\times 2\times 2\times 2\times 2\times 2=512$ . So, \[{{\left( {{2}^{9}} \right)}^{\dfrac{1}{12}}}={{512}^{\dfrac{1}{12}}}\]. We know we can write ${{a}^{\dfrac{1}{n}}}$ as $\sqrt[n]{a}$ . So, we can write \[{{512}^{\dfrac{1}{12}}}\] as $\sqrt[12]{512}$ . So, the value of $\sqrt[3]{24}\div \left( \sqrt[4]{2}.\sqrt[3]{3} \right)$ is equal to $\sqrt[12]{512}$ .

Hence, option A. is the right answer.

Note: ${{\left( {{a}^{m}} \right)}^{n}}$ and ${{a}^{{{m}^{n}}}}$ are not same. In ${{\left( {{a}^{m}} \right)}^{n}}$ , the value ${{a}^{m}}$ is raised to the power $n$ , whereas in ${{a}^{{{m}^{n}}}}$, only the exponent $m$ is raised to the power $n$. Students generally get confused and treat both as the same and end up getting a wrong answer.

Complete step-by-step answer:

Before proceeding with the solution, we must know the formulae used to solve the problem.

A) $\sqrt[n]{a}={{a}^{\dfrac{1}{n}}}$

B) $\dfrac{{{a}^{m}}}{{{b}^{m}}}={{\left( \dfrac{a}{b} \right)}^{m}}$

C) $\dfrac{{{a}^{m}}}{{{a}^{n}}}={{a}^{m-n}}$

D) ${{\left( {{a}^{m}} \right)}^{n}}={{a}^{mn}}$

Now, we will use these formulae to solve the question. First, we will express the numbers in their exponent form. We know we can write $\sqrt[n]{a}$ as ${{a}^{\dfrac{1}{n}}}$ . So, we can write $\sqrt[3]{24}$ as ${{24}^{\dfrac{1}{3}}}$ , $\sqrt[4]{2}$ as ${{2}^{\dfrac{1}{4}}}$ and $\sqrt[3]{3}$ as ${{3}^{\dfrac{1}{3}}}$ . So, we can write $\sqrt[3]{24}\div \left( \sqrt[4]{2}.\sqrt[3]{3} \right)$ as ${{24}^{\dfrac{1}{3}}}\div \left( {{2}^{\dfrac{1}{4}}}\times {{3}^{\dfrac{1}{3}}} \right)$.

We can see that the indices of $24$ and $3$ are the same. Also, we know that $\dfrac{{{a}^{m}}}{{{b}^{m}}}={{\left( \dfrac{a}{b} \right)}^{m}}$ . So, ${{24}^{\dfrac{1}{3}}}\div {{3}^{\dfrac{1}{3}}}={{\left( \dfrac{24}{3} \right)}^{\dfrac{1}{3}}}={{8}^{\dfrac{1}{3}}}$ . So, $\sqrt[3]{24}\div \left( \sqrt[4]{2}.\sqrt[3]{3} \right)$ becomes ${{8}^{\dfrac{1}{3}}}\div {{2}^{\dfrac{1}{4}}}$ .

Now, we know that we can write $8$ as ${{2}^{3}}$ . So, we can write ${{8}^{\dfrac{1}{3}}}$ as ${{\left( {{2}^{3}} \right)}^{\dfrac{1}{3}}}=2$ . So, ${{8}^{\dfrac{1}{3}}}\div {{2}^{\dfrac{1}{4}}}$ becomes $2\div {{2}^{\dfrac{1}{4}}}$ . Now, in $2\div {{2}^{\dfrac{1}{4}}}$ , the bases are the same, i.e. $2$ . Also, we know that $\dfrac{{{a}^{m}}}{{{a}^{n}}}={{a}^{m-n}}$. So, $2\div {{2}^{\dfrac{1}{4}}}={{2}^{1-\dfrac{1}{4}}}={{2}^{\dfrac{3}{4}}}$ .

Now, we know that the value of a fraction does not change on multiplying and dividing it by the same number. So, we can write ${{2}^{\dfrac{3}{4}}}$ as ${{2}^{\dfrac{3}{4}\times \dfrac{3}{3}}}={{2}^{\dfrac{9}{12}}}$. We know, ${{a}^{mn}}={{\left( {{a}^{m}} \right)}^{n}}$ . So, we can write \[{{2}^{\dfrac{9}{12}}}\] as \[{{\left( {{2}^{9}} \right)}^{\dfrac{1}{12}}}\].

Now, we know \[{{a}^{m}}=a\times a\times a\times a....m\,times\]. So, ${{2}^{9}}=2\times 2\times 2\times 2\times 2\times 2\times 2\times 2\times 2=512$ . So, \[{{\left( {{2}^{9}} \right)}^{\dfrac{1}{12}}}={{512}^{\dfrac{1}{12}}}\]. We know we can write ${{a}^{\dfrac{1}{n}}}$ as $\sqrt[n]{a}$ . So, we can write \[{{512}^{\dfrac{1}{12}}}\] as $\sqrt[12]{512}$ . So, the value of $\sqrt[3]{24}\div \left( \sqrt[4]{2}.\sqrt[3]{3} \right)$ is equal to $\sqrt[12]{512}$ .

Hence, option A. is the right answer.

Note: ${{\left( {{a}^{m}} \right)}^{n}}$ and ${{a}^{{{m}^{n}}}}$ are not same. In ${{\left( {{a}^{m}} \right)}^{n}}$ , the value ${{a}^{m}}$ is raised to the power $n$ , whereas in ${{a}^{{{m}^{n}}}}$, only the exponent $m$ is raised to the power $n$. Students generally get confused and treat both as the same and end up getting a wrong answer.

Last updated date: 02nd Oct 2023

â€¢

Total views: 362.7k

â€¢

Views today: 9.62k

Recently Updated Pages

What do you mean by public facilities

Paragraph on Friendship

Slogan on Noise Pollution

Disadvantages of Advertising

Prepare a Pocket Guide on First Aid for your School

10 Slogans on Save the Tiger

Trending doubts

How do you solve x2 11x + 28 0 using the quadratic class 10 maths CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Difference Between Plant Cell and Animal Cell

One cusec is equal to how many liters class 8 maths CBSE

The equation xxx + 2 is satisfied when x is equal to class 10 maths CBSE

What is the color of ferrous sulphate crystals? How does this color change after heating? Name the products formed on strongly heating ferrous sulphate crystals. What type of chemical reaction occurs in this type of change.

Give 10 examples for herbs , shrubs , climbers , creepers

Change the following sentences into negative and interrogative class 10 english CBSE