
Simplify \[4\sin ({420^ \circ } - \alpha )\cos ({60^ \circ } + \alpha )\]
A.\[\sqrt 3 - 2\sin 2\alpha \]
B. \[\sqrt 3 + 2\sin 2\alpha \]
C. \[\sqrt 3 - 2\cos 2\alpha \]
D. \[\sqrt 3 + 2\cos 2\alpha \]
Answer
579.6k+ views
Hint: We use the trigonometric formulas of \[\sin (A - B)\] and \[\cos (A + B)\] to expand the terms given in the question. Substitute the values in the expansion using a table that gives us the value of simple trigonometric functions at few angles. Multiply the expanded values according to the question and use the identity \[{\sin ^2}x + {\cos ^2}x = 1\] to solve further.
* \[\sin (A - B) = \sin A\cos B - \cos A\sin B\]
* \[\cos (A + B) = \cos A\cos B - \sin A\sin B\]
* Table for trigonometric functions like sine, cosine and tan at angles \[{0^ \circ },{30^ \circ },{45^ \circ },{60^ \circ },{90^ \circ }\] is
Complete step by step answer:
We have to find the value of \[4\sin ({420^ \circ } - \alpha )\cos ({60^ \circ } + \alpha )\] ………………..… (1)
We can write \[{420^ \circ } = {360^ \circ } + {60^ \circ }\]
\[ \Rightarrow \sin ({420^ \circ } - \alpha ) = \sin ({360^ \circ } + {60^ \circ } - \alpha )\]
Group the angle in the bracket in RHS
\[ \Rightarrow \sin ({420^ \circ } - \alpha ) = \sin ({360^ \circ } + ({60^ \circ } - \alpha ))\]
We use quadrant diagram to find the value of RHS
From the quadrant diagram we know \[\sin ({360^ \circ } + x) = \sin x\]
\[ \Rightarrow \sin ({420^ \circ } - \alpha ) = \sin ({60^ \circ } - \alpha )\]
Now equation (1) becomes
\[4\sin ({420^ \circ } - \alpha )\cos ({60^ \circ } + \alpha ) = 4\sin ({60^ \circ } - \alpha )\cos ({60^ \circ } + \alpha )\] ……………….… (2)
We solve the two terms \[\sin ({60^ \circ } - \alpha )\] and \[\cos ({60^ \circ } + \alpha )\] separately.
We know \[\sin (A - B) = \sin A\cos B - \cos A\sin B\]
Substitute the value of \[A = {60^ \circ },B = \alpha \]
\[ \Rightarrow \sin ({60^ \circ } - \alpha ) = \sin {60^ \circ }\cos \alpha - \cos {60^ \circ }\sin \alpha \]
From the table of values of trigonometric terms \[\sin {60^ \circ } = \dfrac{{\sqrt 3 }}{2},\cos {60^ \circ } = \dfrac{1}{2}\]
\[ \Rightarrow \sin ({60^ \circ } - \alpha ) = \dfrac{{\sqrt 3 }}{2}\cos \alpha - \dfrac{1}{2}\sin \alpha \]
Take LCM in RHS of the equation
\[ \Rightarrow \sin ({60^ \circ } - \alpha ) = \dfrac{{\sqrt 3 \cos \alpha - \sin \alpha }}{2}\] ………….… (3)
We know \[\cos (A + B) = \cos A\cos B - \sin A\sin B\]
Substitute the value of \[A = {60^ \circ },B = \alpha \]
\[ \Rightarrow \cos ({60^ \circ } + \alpha ) = \cos {60^ \circ }\cos \alpha - \sin {60^ \circ }\sin \alpha \]
From the table of values of trigonometric terms \[\sin {60^ \circ } = \dfrac{{\sqrt 3 }}{2},\cos {60^ \circ } = \dfrac{1}{2}\]
\[ \Rightarrow \cos ({60^ \circ } + \alpha ) = \dfrac{1}{2}\cos \alpha - \dfrac{{\sqrt 3 }}{2}\sin \alpha \]
Take LCM in RHS of the equation
\[ \Rightarrow \cos ({60^ \circ } + \alpha ) = \dfrac{{\cos \alpha - \sqrt 3 \sin \alpha }}{2}\] … (4)
Substitute the values from equation (3) and (4) back in equation (2) i.e.
\[4\sin ({420^ \circ } - \alpha )\cos ({60^ \circ } + \alpha ) = 4\sin ({60^ \circ } - \alpha )\cos ({60^ \circ } + \alpha )\]
\[ \Rightarrow 4\sin ({420^ \circ } - \alpha )\cos ({60^ \circ } + \alpha ) = 4 \times \left( {\dfrac{{\sqrt 3 \cos \alpha - \sin \alpha }}{2}} \right) \times \left( {\dfrac{{\cos \alpha - \sqrt 3 \sin \alpha }}{2}} \right)\]
Cancel the same factors from numerator and denominator in RHS of the equation
\[ \Rightarrow 4\sin ({420^ \circ } - \alpha )\cos ({60^ \circ } + \alpha ) = \left( {\sqrt 3 \cos \alpha - \sin \alpha } \right)\left( {\cos \alpha - \sqrt 3 \sin \alpha } \right)\]
Multiply the brackets in RHS of the equation
\[ \Rightarrow 4\sin ({420^ \circ } - \alpha )\cos ({60^ \circ } + \alpha ) = \sqrt 3 \cos \alpha \left( {\cos \alpha - \sqrt 3 \sin \alpha } \right) - \sin \alpha \left( {\cos \alpha - \sqrt 3 \sin \alpha } \right)\]
\[ \Rightarrow 4\sin ({420^ \circ } - \alpha )\cos ({60^ \circ } + \alpha ) = \sqrt 3 \cos \alpha \times \cos \alpha - \sqrt 3 \cos \alpha \sqrt 3 \sin \alpha - \sin \alpha \cos \alpha + \sin \alpha \sqrt 3 \sin \alpha \]
\[ \Rightarrow 4\sin ({420^ \circ } - \alpha )\cos ({60^ \circ } + \alpha ) = \sqrt 3 {\cos ^2}\alpha - 3\cos \alpha \sin \alpha - \sin \alpha \cos \alpha + \sqrt 3 {\sin ^2}\alpha \]
Collect the terms having common factor between them
\[ \Rightarrow 4\sin ({420^ \circ } - \alpha )\cos ({60^ \circ } + \alpha ) = \left( {\sqrt 3 {{\cos }^2}\alpha + \sqrt 3 {{\sin }^2}\alpha } \right) + \left( { - 3\cos \alpha \sin \alpha - \cos \alpha \sin \alpha } \right)\]
\[ \Rightarrow 4\sin ({420^ \circ } - \alpha )\cos ({60^ \circ } + \alpha ) = \sqrt 3 \left( {{{\cos }^2}\alpha + {{\sin }^2}\alpha } \right) - \cos \alpha \sin \alpha \left( {3 + 1} \right)\]
Use the trigonometric identity \[{\sin ^2}x + {\cos ^2}x = 1\] in RHS of the equation
\[ \Rightarrow 4\sin ({420^ \circ } - \alpha )\cos ({60^ \circ } + \alpha ) = \sqrt 3 - 4\cos \alpha \sin \alpha \]
We can write
\[ \Rightarrow 4\sin ({420^ \circ } - \alpha )\cos ({60^ \circ } + \alpha ) = \sqrt 3 - 2(2\cos \alpha \sin \alpha )\]
We know \[2\sin x\cos x = \sin 2x\]
\[ \Rightarrow 4\sin ({420^ \circ } - \alpha )\cos ({60^ \circ } + \alpha ) = \sqrt 3 - 2\sin 2\alpha \]
\[\therefore \]Value of \[4\sin ({420^ \circ } - \alpha )\cos ({60^ \circ } + \alpha )\] is \[\sqrt 3 - 2\sin 2\alpha \]
\[\therefore \] Option A is correct.
Note:
Alternate method:
Since we know the trigonometric formula \[2\sin A\cos B = \sin (A + B) + \sin (A - B)\]
We have to find the value of \[4\sin ({420^ \circ } - \alpha )\sin ({60^ \circ } + \alpha )\]
We can write
\[4\sin ({420^ \circ } - \alpha )\sin ({60^ \circ } + \alpha ) = 2\left\{ {2\sin ({{420}^ \circ } - \alpha )\sin ({{60}^ \circ } + \alpha )} \right\}\]
Apply the formula \[2\sin A\cos B = \sin (A + B) + \sin (A - B)\] in RHS of the equation
\[ \Rightarrow 4\sin ({420^ \circ } - \alpha )\sin ({60^ \circ } + \alpha ) = 2\left\{ {\sin \left( {({{420}^ \circ } - \alpha ) + ({{60}^ \circ } + \alpha )} \right) + \sin \left( {({{420}^ \circ } - \alpha ) - ({{60}^ \circ } + \alpha )} \right)} \right\}\]
Calculate the angle inside the brackets in RHS
\[ \Rightarrow 4\sin ({420^ \circ } - \alpha )\sin ({60^ \circ } + \alpha ) = 2\left\{ {\sin \left( {{{420}^ \circ } - \alpha + {{60}^ \circ } + \alpha } \right) + \sin \left( {{{420}^ \circ } - \alpha - {{60}^ \circ } - \alpha } \right)} \right\}\]
\[ \Rightarrow 4\sin ({420^ \circ } - \alpha )\sin ({60^ \circ } + \alpha ) = 2\left\{ {\sin \left( {{{480}^ \circ }} \right) + \sin \left( {{{360}^ \circ } - 2\alpha } \right)} \right\}\] … (1)
We can write \[\sin ({480^ \circ }) = \sin ({540^ \circ } - {60^ \circ })\]
From the quadrant diagram
\[\sin (3\pi - x) = \sin x\]
\[ \Rightarrow \sin ({480^ \circ }) = \sin ({60^ \circ })\]
From the table we have \[\sin {60^ \circ } = \dfrac{{\sqrt 3 }}{2}\]
\[\therefore \sin ({480^ \circ }) = \dfrac{{\sqrt 3 }}{2}\]
We can write \[\sin \left( {{{360}^ \circ } - 2\alpha } \right) = - \sin 2\alpha \] because as we move in backward direction in the quadrant diagram, value of sine becomes negative
\[\therefore \sin ({360^ \circ } - 2\alpha ) = - \sin 2\alpha \]
Substitute the values in equation (1)
\[ \Rightarrow 4\sin ({420^ \circ } - \alpha )\cos ({60^ \circ } + \alpha ) = 2\left\{ {\dfrac{{\sqrt 3 }}{2} - \sin 2\alpha } \right\}\]
\[ \Rightarrow 4\sin ({420^ \circ } - \alpha )\cos ({60^ \circ } + \alpha ) = \sqrt 3 - 2\sin 2\alpha \]
\[\therefore \] Option A is correct.
* \[\sin (A - B) = \sin A\cos B - \cos A\sin B\]
* \[\cos (A + B) = \cos A\cos B - \sin A\sin B\]
* Table for trigonometric functions like sine, cosine and tan at angles \[{0^ \circ },{30^ \circ },{45^ \circ },{60^ \circ },{90^ \circ }\] is
| ANGLEFUNCTION | \[{0^ \circ }\] | \[{30^ \circ }\] | \[{45^ \circ }\] | \[{60^ \circ }\] | \[{90^ \circ }\] |
| Sin | 0 | \[\dfrac{1}{2}\] | \[\dfrac{1}{{\sqrt 2 }}\] | \[\dfrac{{\sqrt 3 }}{2}\] | 1 |
| Cos | 1 | \[\dfrac{{\sqrt 3 }}{2}\] | \[\dfrac{1}{{\sqrt 2 }}\] | \[\dfrac{1}{2}\] | 0 |
| Tan | 0 | \[\dfrac{1}{{\sqrt 3 }}\] | 1 | \[\sqrt 3 \] | Not defined |
Complete step by step answer:
We have to find the value of \[4\sin ({420^ \circ } - \alpha )\cos ({60^ \circ } + \alpha )\] ………………..… (1)
We can write \[{420^ \circ } = {360^ \circ } + {60^ \circ }\]
\[ \Rightarrow \sin ({420^ \circ } - \alpha ) = \sin ({360^ \circ } + {60^ \circ } - \alpha )\]
Group the angle in the bracket in RHS
\[ \Rightarrow \sin ({420^ \circ } - \alpha ) = \sin ({360^ \circ } + ({60^ \circ } - \alpha ))\]
We use quadrant diagram to find the value of RHS
From the quadrant diagram we know \[\sin ({360^ \circ } + x) = \sin x\]
\[ \Rightarrow \sin ({420^ \circ } - \alpha ) = \sin ({60^ \circ } - \alpha )\]
Now equation (1) becomes
\[4\sin ({420^ \circ } - \alpha )\cos ({60^ \circ } + \alpha ) = 4\sin ({60^ \circ } - \alpha )\cos ({60^ \circ } + \alpha )\] ……………….… (2)
We solve the two terms \[\sin ({60^ \circ } - \alpha )\] and \[\cos ({60^ \circ } + \alpha )\] separately.
We know \[\sin (A - B) = \sin A\cos B - \cos A\sin B\]
Substitute the value of \[A = {60^ \circ },B = \alpha \]
\[ \Rightarrow \sin ({60^ \circ } - \alpha ) = \sin {60^ \circ }\cos \alpha - \cos {60^ \circ }\sin \alpha \]
From the table of values of trigonometric terms \[\sin {60^ \circ } = \dfrac{{\sqrt 3 }}{2},\cos {60^ \circ } = \dfrac{1}{2}\]
\[ \Rightarrow \sin ({60^ \circ } - \alpha ) = \dfrac{{\sqrt 3 }}{2}\cos \alpha - \dfrac{1}{2}\sin \alpha \]
Take LCM in RHS of the equation
\[ \Rightarrow \sin ({60^ \circ } - \alpha ) = \dfrac{{\sqrt 3 \cos \alpha - \sin \alpha }}{2}\] ………….… (3)
We know \[\cos (A + B) = \cos A\cos B - \sin A\sin B\]
Substitute the value of \[A = {60^ \circ },B = \alpha \]
\[ \Rightarrow \cos ({60^ \circ } + \alpha ) = \cos {60^ \circ }\cos \alpha - \sin {60^ \circ }\sin \alpha \]
From the table of values of trigonometric terms \[\sin {60^ \circ } = \dfrac{{\sqrt 3 }}{2},\cos {60^ \circ } = \dfrac{1}{2}\]
\[ \Rightarrow \cos ({60^ \circ } + \alpha ) = \dfrac{1}{2}\cos \alpha - \dfrac{{\sqrt 3 }}{2}\sin \alpha \]
Take LCM in RHS of the equation
\[ \Rightarrow \cos ({60^ \circ } + \alpha ) = \dfrac{{\cos \alpha - \sqrt 3 \sin \alpha }}{2}\] … (4)
Substitute the values from equation (3) and (4) back in equation (2) i.e.
\[4\sin ({420^ \circ } - \alpha )\cos ({60^ \circ } + \alpha ) = 4\sin ({60^ \circ } - \alpha )\cos ({60^ \circ } + \alpha )\]
\[ \Rightarrow 4\sin ({420^ \circ } - \alpha )\cos ({60^ \circ } + \alpha ) = 4 \times \left( {\dfrac{{\sqrt 3 \cos \alpha - \sin \alpha }}{2}} \right) \times \left( {\dfrac{{\cos \alpha - \sqrt 3 \sin \alpha }}{2}} \right)\]
Cancel the same factors from numerator and denominator in RHS of the equation
\[ \Rightarrow 4\sin ({420^ \circ } - \alpha )\cos ({60^ \circ } + \alpha ) = \left( {\sqrt 3 \cos \alpha - \sin \alpha } \right)\left( {\cos \alpha - \sqrt 3 \sin \alpha } \right)\]
Multiply the brackets in RHS of the equation
\[ \Rightarrow 4\sin ({420^ \circ } - \alpha )\cos ({60^ \circ } + \alpha ) = \sqrt 3 \cos \alpha \left( {\cos \alpha - \sqrt 3 \sin \alpha } \right) - \sin \alpha \left( {\cos \alpha - \sqrt 3 \sin \alpha } \right)\]
\[ \Rightarrow 4\sin ({420^ \circ } - \alpha )\cos ({60^ \circ } + \alpha ) = \sqrt 3 \cos \alpha \times \cos \alpha - \sqrt 3 \cos \alpha \sqrt 3 \sin \alpha - \sin \alpha \cos \alpha + \sin \alpha \sqrt 3 \sin \alpha \]
\[ \Rightarrow 4\sin ({420^ \circ } - \alpha )\cos ({60^ \circ } + \alpha ) = \sqrt 3 {\cos ^2}\alpha - 3\cos \alpha \sin \alpha - \sin \alpha \cos \alpha + \sqrt 3 {\sin ^2}\alpha \]
Collect the terms having common factor between them
\[ \Rightarrow 4\sin ({420^ \circ } - \alpha )\cos ({60^ \circ } + \alpha ) = \left( {\sqrt 3 {{\cos }^2}\alpha + \sqrt 3 {{\sin }^2}\alpha } \right) + \left( { - 3\cos \alpha \sin \alpha - \cos \alpha \sin \alpha } \right)\]
\[ \Rightarrow 4\sin ({420^ \circ } - \alpha )\cos ({60^ \circ } + \alpha ) = \sqrt 3 \left( {{{\cos }^2}\alpha + {{\sin }^2}\alpha } \right) - \cos \alpha \sin \alpha \left( {3 + 1} \right)\]
Use the trigonometric identity \[{\sin ^2}x + {\cos ^2}x = 1\] in RHS of the equation
\[ \Rightarrow 4\sin ({420^ \circ } - \alpha )\cos ({60^ \circ } + \alpha ) = \sqrt 3 - 4\cos \alpha \sin \alpha \]
We can write
\[ \Rightarrow 4\sin ({420^ \circ } - \alpha )\cos ({60^ \circ } + \alpha ) = \sqrt 3 - 2(2\cos \alpha \sin \alpha )\]
We know \[2\sin x\cos x = \sin 2x\]
\[ \Rightarrow 4\sin ({420^ \circ } - \alpha )\cos ({60^ \circ } + \alpha ) = \sqrt 3 - 2\sin 2\alpha \]
\[\therefore \]Value of \[4\sin ({420^ \circ } - \alpha )\cos ({60^ \circ } + \alpha )\] is \[\sqrt 3 - 2\sin 2\alpha \]
\[\therefore \] Option A is correct.
Note:
Alternate method:
Since we know the trigonometric formula \[2\sin A\cos B = \sin (A + B) + \sin (A - B)\]
We have to find the value of \[4\sin ({420^ \circ } - \alpha )\sin ({60^ \circ } + \alpha )\]
We can write
\[4\sin ({420^ \circ } - \alpha )\sin ({60^ \circ } + \alpha ) = 2\left\{ {2\sin ({{420}^ \circ } - \alpha )\sin ({{60}^ \circ } + \alpha )} \right\}\]
Apply the formula \[2\sin A\cos B = \sin (A + B) + \sin (A - B)\] in RHS of the equation
\[ \Rightarrow 4\sin ({420^ \circ } - \alpha )\sin ({60^ \circ } + \alpha ) = 2\left\{ {\sin \left( {({{420}^ \circ } - \alpha ) + ({{60}^ \circ } + \alpha )} \right) + \sin \left( {({{420}^ \circ } - \alpha ) - ({{60}^ \circ } + \alpha )} \right)} \right\}\]
Calculate the angle inside the brackets in RHS
\[ \Rightarrow 4\sin ({420^ \circ } - \alpha )\sin ({60^ \circ } + \alpha ) = 2\left\{ {\sin \left( {{{420}^ \circ } - \alpha + {{60}^ \circ } + \alpha } \right) + \sin \left( {{{420}^ \circ } - \alpha - {{60}^ \circ } - \alpha } \right)} \right\}\]
\[ \Rightarrow 4\sin ({420^ \circ } - \alpha )\sin ({60^ \circ } + \alpha ) = 2\left\{ {\sin \left( {{{480}^ \circ }} \right) + \sin \left( {{{360}^ \circ } - 2\alpha } \right)} \right\}\] … (1)
We can write \[\sin ({480^ \circ }) = \sin ({540^ \circ } - {60^ \circ })\]
From the quadrant diagram
\[\sin (3\pi - x) = \sin x\]
\[ \Rightarrow \sin ({480^ \circ }) = \sin ({60^ \circ })\]
From the table we have \[\sin {60^ \circ } = \dfrac{{\sqrt 3 }}{2}\]
\[\therefore \sin ({480^ \circ }) = \dfrac{{\sqrt 3 }}{2}\]
We can write \[\sin \left( {{{360}^ \circ } - 2\alpha } \right) = - \sin 2\alpha \] because as we move in backward direction in the quadrant diagram, value of sine becomes negative
\[\therefore \sin ({360^ \circ } - 2\alpha ) = - \sin 2\alpha \]
Substitute the values in equation (1)
\[ \Rightarrow 4\sin ({420^ \circ } - \alpha )\cos ({60^ \circ } + \alpha ) = 2\left\{ {\dfrac{{\sqrt 3 }}{2} - \sin 2\alpha } \right\}\]
\[ \Rightarrow 4\sin ({420^ \circ } - \alpha )\cos ({60^ \circ } + \alpha ) = \sqrt 3 - 2\sin 2\alpha \]
\[\therefore \] Option A is correct.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

