
How do you simplify (3+square root of 2)(3-square root of 2) ?
Answer
548.4k+ views
Hint: The value of the algebraic expression $ \left( a+b \right)\left( a-b \right) $ is equal to $ {{a}^{2}}-{{b}^{2}} $ . The above question is in the format of $ \left( a+b \right)\left( a-b \right) $ we can solve the question by this expression by taking a equal to 3 and b equal to $ \sqrt{2} $
Complete step by step answer:
In the given question we have to find the value of (3+square root of 2)(3-square root of 2)
$ \left( 3+\sqrt{2} \right)\left( 3-\sqrt{2} \right) $
We know that $ \left( a+b \right)\left( a-b \right) $ is equal to $ {{a}^{2}}-{{b}^{2}} $ .If we assume a is equal to 3 and b is equal to $ \sqrt{2} $ the answer to $ \left( 3+\sqrt{2} \right)\left( 3-\sqrt{2} \right) $ will be
$ \left( {{3}^{2}}-{{\left( \sqrt{2} \right)}^{2}} \right) $ …….eq1
We know the property $ {{a}^{m}}{{b}^{m}} $ = $ {{\left( ab \right)}^{m}} $
We can write square root of 2 as $ {{2}^{\dfrac{1}{2}}} $
Applying above property to calculate $ \sqrt{2}\times \sqrt{2} $
So $ {{2}^{\dfrac{1}{2}}}\times {{2}^{\dfrac{1}{2}}} $ will be equal to $ {{\left( 2\times 2 \right)}^{\dfrac{1}{2}}} $
$ \Rightarrow $ $ {{\left( 2\times 2 \right)}^{\dfrac{1}{2}}} $ = $ {{4}^{\dfrac{1}{2}}} $
We know that $ {{4}^{\dfrac{1}{2}}} $ is equal to 2.
So the square of $ \sqrt{2} $ is 2.
We can replace square of $ \sqrt{2} $ with 2 in eq1
$ \Rightarrow 9-2=7 $
We can solve this by algebraic multiplication.
We can write $ \left( a+b \right)c $ as $ ac+bc $ .We will apply this property to solve the equation.
(3+square root of 2)(3-square root of 2)
= $ \left( 3+\sqrt{2} \right)\left( 3-\sqrt{2} \right) $
$ \Rightarrow 3\left( 3-\sqrt{2} \right)+\sqrt{2}\left( 3-\sqrt{2} \right) $
$ \Rightarrow 9+3\sqrt{2}-3\sqrt{2}-2 $
$ =7 $
Note:
It is always good to remember some standard algebraic formula like $ \left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}} $ so that this type of problem would be easier to solve. Sometimes the problem will not be in a standard algebraic form in that case we always can use manual multiplication like we did in the second method. Remember the exponential property some of the method that might come into use are $ {{a}^{m}}\times {{a}^{n}}={{a}^{m+n}} $ , $ \dfrac{{{a}^{m}}}{{{a}^{n}}}={{a}^{m-n}} $ , $ {{a}^{m}}{{b}^{m}}={{\left( ab \right)}^{m}} $ , and $ \dfrac{{{a}^{m}}}{{{b}^{m}}}={{\left( \dfrac{a}{b} \right)}^{m}} $ .
Complete step by step answer:
In the given question we have to find the value of (3+square root of 2)(3-square root of 2)
$ \left( 3+\sqrt{2} \right)\left( 3-\sqrt{2} \right) $
We know that $ \left( a+b \right)\left( a-b \right) $ is equal to $ {{a}^{2}}-{{b}^{2}} $ .If we assume a is equal to 3 and b is equal to $ \sqrt{2} $ the answer to $ \left( 3+\sqrt{2} \right)\left( 3-\sqrt{2} \right) $ will be
$ \left( {{3}^{2}}-{{\left( \sqrt{2} \right)}^{2}} \right) $ …….eq1
We know the property $ {{a}^{m}}{{b}^{m}} $ = $ {{\left( ab \right)}^{m}} $
We can write square root of 2 as $ {{2}^{\dfrac{1}{2}}} $
Applying above property to calculate $ \sqrt{2}\times \sqrt{2} $
So $ {{2}^{\dfrac{1}{2}}}\times {{2}^{\dfrac{1}{2}}} $ will be equal to $ {{\left( 2\times 2 \right)}^{\dfrac{1}{2}}} $
$ \Rightarrow $ $ {{\left( 2\times 2 \right)}^{\dfrac{1}{2}}} $ = $ {{4}^{\dfrac{1}{2}}} $
We know that $ {{4}^{\dfrac{1}{2}}} $ is equal to 2.
So the square of $ \sqrt{2} $ is 2.
We can replace square of $ \sqrt{2} $ with 2 in eq1
$ \Rightarrow 9-2=7 $
We can solve this by algebraic multiplication.
We can write $ \left( a+b \right)c $ as $ ac+bc $ .We will apply this property to solve the equation.
(3+square root of 2)(3-square root of 2)
= $ \left( 3+\sqrt{2} \right)\left( 3-\sqrt{2} \right) $
$ \Rightarrow 3\left( 3-\sqrt{2} \right)+\sqrt{2}\left( 3-\sqrt{2} \right) $
$ \Rightarrow 9+3\sqrt{2}-3\sqrt{2}-2 $
$ =7 $
Note:
It is always good to remember some standard algebraic formula like $ \left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}} $ so that this type of problem would be easier to solve. Sometimes the problem will not be in a standard algebraic form in that case we always can use manual multiplication like we did in the second method. Remember the exponential property some of the method that might come into use are $ {{a}^{m}}\times {{a}^{n}}={{a}^{m+n}} $ , $ \dfrac{{{a}^{m}}}{{{a}^{n}}}={{a}^{m-n}} $ , $ {{a}^{m}}{{b}^{m}}={{\left( ab \right)}^{m}} $ , and $ \dfrac{{{a}^{m}}}{{{b}^{m}}}={{\left( \dfrac{a}{b} \right)}^{m}} $ .
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

