Answer

Verified

393.6k+ views

**Hint**: Simplify the above expression based upon the priority order. Parentheses (round brackets) have the highest priority then the square brackets and then the curly brackets. This means, the terms in the round brackets must be solved first and then the terms in square brackets and then the terms in curly brackets. Use this info to simplify the expression. `

**:**

__Complete step-by-step answer__We are given to simplify the expression $ 11x - \left[ {8y - \left\{ {11x - \left( {7z - 3y} \right) + 5y - \left( {3x - 2y - z} \right)} \right\}} \right] $

The expression has terms composed in square brackets, curly brackets and round brackets.

Following the order of priority, the part of the expression with round brackets must be solved first and then the part of the expression with square brackets and then the part of the expression with curly brackets.

First we are solving for the round brackets.

There is a minus sign before the part of the expression with round brackets. So send the minus sign inside.

$ \Rightarrow 11x - \left[ {8y - \left\{ {11x - \left( {7z - 3y} \right) + 5y - \left( {3x - 2y - z} \right)} \right\}} \right] = 11x - \left[ {8y - \left\{ {11x - 7z + 3y + 5y - 3x + 2y + z} \right\}} \right] $

The expression now has only square brackets and curly brackets. So, the next one is the part with square brackets. But there is a sub part with curly brackets inside the square brackets. So solve the curly brackets first.

There is a minus sign before the part of the expression with curly brackets. So send the minus sign inside.

$ \Rightarrow 11x - \left[ {8y - \left\{ {11x - 7z + 3y + 5y - 3x + 2y + z} \right\}} \right] = 11x - \left[ {8y - 11x + 7z - 3y - 5y + 3x - 2y - z} \right] $

Now we are solving for square brackets by sending the minus sign inside.

$ \Rightarrow 11x - \left[ {8y - 11x + 7z - 3y - 5y + + 3x - 2y - z} \right] = 11x - 8y + 11x - 7z + 3y + 5y - 3x + 2y + z $

Now we are putting the similar terms together.

$

\Rightarrow 11x + 11x - 3x - 8y + 3y + 5y + 2y - 7z + z \\

= 19x + 2y - 6z \;

$

Therefore, the simplification of $ 11x - \left[ {8y - \left\{ {11x - \left( {7z - 3y} \right) + 5y - \left( {3x - 2y - z} \right)} \right\}} \right] $ is $ 19x + 2y - 6z $

**So, the correct answer is “ $ 19x + 2y - 6z $ ”.**

**Note**: If we solve square brackets first and then round brackets next, then the result obtained by doing so will be wrong. So always the order must be followed. And round brackets must be solved first. If there is a presence of another type of brackets, say x, composed in round brackets, x must be solved and then we should go for round brackets.

Recently Updated Pages

How do you find the sum of the roots of the roots ofx2 class 10 maths CBSE

How do you construct perpendicular bisectors of a class 10 maths CBSE

How do you factor and solve x2 8x + 15 0 class 10 maths CBSE

How do you solve dfrac5y3dfracy+72y6+1 and find any class 10 maths CBSE

If Y cosxlog x + logxx then dfracdydx cosxlog xleft class 10 maths CBSE

How do you simplify left 3x1 rightleft 2x+6 right class 10 maths CBSE

Trending doubts

Difference Between Plant Cell and Animal Cell

Give 10 examples for herbs , shrubs , climbers , creepers

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

Write the 6 fundamental rights of India and explain in detail

Name 10 Living and Non living things class 9 biology CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths