
Show that the semi-vertical angle of a cone of maximum volume and given slant height is-
$\cos^{-1}\left(\dfrac1{\sqrt3}\right)$
Answer
594.3k+ views
Hint: In this question, we will use the formula for the volume of the cone to form the function, and then differentiate it in order to find the maxima and find the semi-vertical angle. The volume of cone is given by-
$\dfrac{1}{3} \pi{r}^{2} \times h$
Complete step-by-step solution -
Let this be the front view of the cone, with semi-vertical angle k and given slant height l. By applying trigonometric properties, we can write that-
$h = l \cos k$
$r = l \sin k$
The volume of the cone is given by-
$\mathrm V=\dfrac13\mathrm{πr}^2\mathrm h\\\mathrm V=\dfrac13\mathrm{πsin}^2\mathrm{k cosk}$
To find the maximum value of V, we will differentiate the function V and equate it to zero. Then we can get the corresponding value of k. So-
$\dfrac{\operatorname d\mathrm V}{\operatorname d\mathrm k}=\dfrac13\mathrm\pi\left(\left(2\mathrm{sink cosk}\right)\mathrm{cosk}+\sin^2\mathrm k\left(-\mathrm{sink}\right)\right)=0\\
\Rightarrow \dfrac{\operatorname d\mathrm V}{\operatorname d\mathrm k}=\dfrac13\mathrm\pi\left(2\mathrm{sink cos}^2\mathrm k-\sin^3\mathrm k\right)=0\\
\Rightarrow \dfrac{\operatorname d\mathrm V}{\operatorname d\mathrm k}=\mathrm{sink}\left(2\cos^2\mathrm k-\sin^2\mathrm k\right)=0\\$
$\Rightarrow \sin k = 0$ or $2 \cos 2k = \sin 2k$
As angle k = 0 or k < 0 is not possible, so using $\sin^{2}k + \cos^{2}k = 1$,.
$\Rightarrow 2 \cos^{2}k = 1 -\cos^{2}k$
$\Rightarrow\cos^{2}k$ = $\dfrac{1}{3}$
$\Rightarrow\mathrm{cosk}=\dfrac{1}{\sqrt3}\\
\Rightarrow \mathrm k=\cos^{-1}\left(\dfrac{1}{\sqrt3}\right)$
This is the required answer.
Note: In this we can also satisfy the condition for maxima by proving the second differential to be less than zero. But it is not required because the minima condition is when k = 0, so the other condition will clearly become the maxima condition.
$\dfrac{1}{3} \pi{r}^{2} \times h$
Complete step-by-step solution -
Let this be the front view of the cone, with semi-vertical angle k and given slant height l. By applying trigonometric properties, we can write that-
$h = l \cos k$
$r = l \sin k$
The volume of the cone is given by-
$\mathrm V=\dfrac13\mathrm{πr}^2\mathrm h\\\mathrm V=\dfrac13\mathrm{πsin}^2\mathrm{k cosk}$
To find the maximum value of V, we will differentiate the function V and equate it to zero. Then we can get the corresponding value of k. So-
$\dfrac{\operatorname d\mathrm V}{\operatorname d\mathrm k}=\dfrac13\mathrm\pi\left(\left(2\mathrm{sink cosk}\right)\mathrm{cosk}+\sin^2\mathrm k\left(-\mathrm{sink}\right)\right)=0\\
\Rightarrow \dfrac{\operatorname d\mathrm V}{\operatorname d\mathrm k}=\dfrac13\mathrm\pi\left(2\mathrm{sink cos}^2\mathrm k-\sin^3\mathrm k\right)=0\\
\Rightarrow \dfrac{\operatorname d\mathrm V}{\operatorname d\mathrm k}=\mathrm{sink}\left(2\cos^2\mathrm k-\sin^2\mathrm k\right)=0\\$
$\Rightarrow \sin k = 0$ or $2 \cos 2k = \sin 2k$
As angle k = 0 or k < 0 is not possible, so using $\sin^{2}k + \cos^{2}k = 1$,.
$\Rightarrow 2 \cos^{2}k = 1 -\cos^{2}k$
$\Rightarrow\cos^{2}k$ = $\dfrac{1}{3}$
$\Rightarrow\mathrm{cosk}=\dfrac{1}{\sqrt3}\\
\Rightarrow \mathrm k=\cos^{-1}\left(\dfrac{1}{\sqrt3}\right)$
This is the required answer.
Note: In this we can also satisfy the condition for maxima by proving the second differential to be less than zero. But it is not required because the minima condition is when k = 0, so the other condition will clearly become the maxima condition.
Recently Updated Pages
Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
The shortest day of the year in India

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

