
Show that the points \[O\left( {0,0,0} \right),A\left( {2, - 3,3} \right),B\left( { - 2,3, - 3} \right)\] are collinear. Find the ratio in which each point divides the segment joining the other two.
Answer
576k+ views
Hint: First, we will try to prove that the area of the triangle is equal to 0 so that the given points are collinear. Hence, we will find the ratio through which each point divides the segment joining the other two. Eventually arriving at the final answer.
Complete step-by-step answer:
Let's find the area of \[\vartriangle OAB\] which is given by,
\[\Delta = \dfrac{1}{2}|\mathop {OA}\limits^ \to | \times |\mathop {OB}\limits^ \to |\sin \theta \]
Where \[\theta \] is the angle between \[\mathop {OA}\limits^ \to = (2 - 0)\mathop i\limits^ \wedge + ( - 3 - 0)\mathop j\limits^ \wedge + (3 - 0)\mathop z\limits^ \wedge \] and \[\mathop {OB}\limits^ \to = ( - 2 - 0)\mathop i\limits^ \wedge + ( - 3 - 0)\mathop j\limits^ \wedge + ( - 3 - 0)\mathop z\limits^ \wedge \]
Now, \[\mathop {OB}\limits^ \to \]
Rearranging the terms, we get
\[ \Rightarrow \cos (\theta ) = \dfrac{{\mathop {OA}\limits^ \to \times \mathop {OB}\limits^ \to }}{{|\mathop {OB}\limits^ \to ||\mathop {OA}\limits^ \to |}}\]
Substituting the values of \[\mathop {OA}\limits^ \to \], \[\mathop {OB}\limits^ \to \], \[|\mathop {OA}\limits^ \to |\] and \[|\mathop {OB}\limits^ \to |\]
\[ \Rightarrow \cos (\theta ) = \dfrac{{\left( {2\mathop i\limits^ \wedge - 3\mathop j\limits^ \wedge + 3\mathop z\limits^ \wedge } \right) \times \left( { - 2\mathop i\limits^ \wedge + 3\mathop j\limits^ \wedge - 3\mathop z\limits^ \wedge } \right)}}{{\sqrt {{2^2} + ( - 3){}^2 + 3{}^2} \times \sqrt {{{( - 2)}^2} + 3{}^2 + ( - 3){}^2} }}\]
Now as we know in dot product \[\mathop i\limits^ \wedge \times \mathop i\limits^ \wedge = 1,\mathop j\limits^ \wedge \times \mathop j\limits^ \wedge = 1,\mathop k\limits^ \wedge \times \mathop k\limits^ \wedge = 1\] and \[\mathop i\limits^ \wedge \times \mathop j\limits^ \wedge \,or\mathop i\limits^ \wedge \times \mathop k\limits^ \wedge = 0,\mathop j\limits^ \wedge \times \mathop i\limits^ \wedge \,or\,\mathop j\limits^ \wedge \times \mathop k\limits^ \wedge = 0\,or\,\mathop k\limits^ \wedge \times \mathop j\limits^ \wedge = 0\], we get
\[ \Rightarrow \cos (\theta ) = \dfrac{{2\mathop i\limits^ \wedge \times \left( { - 2\mathop i\limits^ \wedge } \right) + \left( { - 3} \right)\mathop j\limits^ \wedge \times 3\mathop j\limits^ \wedge + 3\mathop i\limits^ \wedge \times \left( { - 3\mathop i\limits^ \wedge } \right)}}{{\sqrt {{2^2} + ( - 3){}^2 + 3{}^2} \times \sqrt {{{( - 2)}^2} + 3{}^2 + ( - 3){}^2} }}\]
Now as we know in the dot product \[\mathop i\limits^ \wedge \times \mathop i\limits^ \wedge = 1,\mathop j\limits^ \wedge \times \mathop j\limits^ \wedge = 1,\mathop k\limits^ \wedge \times \mathop k\limits^ \wedge = 1\]
\[ \Rightarrow \cos (\theta ) = \dfrac{{ - 4 - 9 - 9}}{{\sqrt {4 + 9 + 9} \times \sqrt {4 + 9 + 9} }}\]
On simplification we get,
\[ \Rightarrow \cos (\theta ) = \dfrac{{ - (4 + 9 + 9)}}{{4 + 9 + 9}}\]
On cancelling common terms, we get
\[ \Rightarrow \cos (\theta ) = - 1\]
On Substituting \[ - 1 = \cos (180^\circ )\], we get
\[ \Rightarrow \cos (\theta ) = \cos (180^\circ )\]
Comparing the above angles.
\[ \Rightarrow \theta = 180^\circ \]
\[ \Rightarrow \Delta = 0\] as \[\sin (180^\circ ) = 0\]
\[ \Rightarrow \] O, A, B are collinear
Now, let A divides OB in \[k:1\]
We know that the section formula for 3d geometry is \[p(x,y,z) = \left( {\dfrac{{m{x_1} + n{x_2}}}{{m + n}},\dfrac{{m{y_1} + n{y_2}}}{{m + n}},\dfrac{{m{z_1} + n{z_2}}}{{m + n}}} \right)\] Where \[m = k,n = 1,x = 2,{x_1} = - 2,{x_2} = 0\]
Now, comparing only the x coordinate of the section formula we get
\[x = \dfrac{{m{x_1} + n{x_2}}}{{m + n}}\]
Dividing numerator and denominator by n on the RHS, we get
\[ \Rightarrow x = \dfrac{{\dfrac{{m{x_1} + n{x_2}}}{n}}}{{\dfrac{{m + n}}{n}}}\]
On simplification we get
\[ \Rightarrow x = \dfrac{{\dfrac{m}{n}{x_1} + {x_2}}}{{\dfrac{m}{n} + 1}}\]
Since we have taken \[\dfrac{m}{n} = k\]
\[ \Rightarrow 2 = \dfrac{{ - 2k + 0}}{{k + 1}}\]
On cross multiplication we get
\[ \Rightarrow 2(k + 1) = - 2k\]
In simplification we get
\[ \Rightarrow 2k + 2 = - 2k\]
On rearranging we get
\[ \Rightarrow 2k + 2k = - 2\]
On simplification we get
\[ \Rightarrow 4k = - 2\]
On dividing the equation by 4, we get,
\[ \Rightarrow k = \dfrac{{ - 1}}{2}\]
\[ \Rightarrow \] A divides OB in \[1:2\] externally
Now for B, Where \[\dfrac{m}{n} = k\], \[x = - 2\], \[{x_1} = - 2\], \[{x_2} = 0\]
\[x = \dfrac{{m{x_1} + n{x_2}}}{{m + n}}\]
Dividing numerator and denominator by n on the RHS
\[ \Rightarrow x = \dfrac{{\dfrac{{m{x_1} + n{x_2}}}{n}}}{{\dfrac{{m + n}}{n}}}\]
On simplification we get
\[ \Rightarrow x = \dfrac{{\dfrac{m}{n}{x_1} + {x_2}}}{{\dfrac{m}{n} + 1}}\]
Since we have taken \[\dfrac{m}{n} = k\]
\[ \Rightarrow - 2 = \dfrac{{2k + 0}}{{k + 1}}\]
On cross multiplication we get
\[ \Rightarrow - 2(k + 1) = 2k\]
On simplification we get
\[ \Rightarrow - 2k - 2 = 2k\]
On rearranging we get
\[ \Rightarrow - 2k - 2k = 2\]
On simplification we get
\[ \Rightarrow - 4k = 2\]
On dividing the equation by -4 we get
\[ \Rightarrow k = \dfrac{{ - 1}}{2}\]
\[ \Rightarrow \] B divides OA in \[1:2\] externally for O
Now for O, Where \[\dfrac{m}{n} = k\], \[x = 0\], \[{x_1} = - 2\], \[{x_2} = 2\]
\[x = \dfrac{{m{x_1} + n{x_2}}}{{m + n}}\]
Dividing numerator and denominator by n on the RHS
\[ \Rightarrow x = \dfrac{{\dfrac{{m{x_1} + n{x_2}}}{n}}}{{\dfrac{{m + n}}{n}}}\]
On simplification we get
\[ \Rightarrow x = \dfrac{{\dfrac{m}{n}{x_1} + {x_2}}}{{\dfrac{m}{n} + 1}}\]
Since we have taken \[\dfrac{m}{n} = k\]
\[ \Rightarrow 0 = \dfrac{{ - 2k + 2}}{{k + 1}}\]
On cross multiplication we get
\[ \Rightarrow 0 = - 2k + 2\]
On rearranging we get
\[ \Rightarrow 2k = 2\]
On dividing the equation by 2 we get,
\[ \Rightarrow k = \dfrac{2}{2}\]
On simplification we get
\[ \Rightarrow k = \dfrac{1}{1}\]
\[ \Rightarrow \] O divides AB in \[1:1\] internally.
Note: In these types of questions, we need to remember that we cannot solve an equation with two variables for the unique solution so we need to convert the equation of section formula’s ratio from \[\dfrac{m}{n}\] to \[\dfrac{k}{1}\] by taking \[k = \dfrac{m}{n}\] hence we get one variable and we can solve the equation.
Complete step-by-step answer:
Let's find the area of \[\vartriangle OAB\] which is given by,
\[\Delta = \dfrac{1}{2}|\mathop {OA}\limits^ \to | \times |\mathop {OB}\limits^ \to |\sin \theta \]
Where \[\theta \] is the angle between \[\mathop {OA}\limits^ \to = (2 - 0)\mathop i\limits^ \wedge + ( - 3 - 0)\mathop j\limits^ \wedge + (3 - 0)\mathop z\limits^ \wedge \] and \[\mathop {OB}\limits^ \to = ( - 2 - 0)\mathop i\limits^ \wedge + ( - 3 - 0)\mathop j\limits^ \wedge + ( - 3 - 0)\mathop z\limits^ \wedge \]
Now, \[\mathop {OB}\limits^ \to \]
Rearranging the terms, we get
\[ \Rightarrow \cos (\theta ) = \dfrac{{\mathop {OA}\limits^ \to \times \mathop {OB}\limits^ \to }}{{|\mathop {OB}\limits^ \to ||\mathop {OA}\limits^ \to |}}\]
Substituting the values of \[\mathop {OA}\limits^ \to \], \[\mathop {OB}\limits^ \to \], \[|\mathop {OA}\limits^ \to |\] and \[|\mathop {OB}\limits^ \to |\]
\[ \Rightarrow \cos (\theta ) = \dfrac{{\left( {2\mathop i\limits^ \wedge - 3\mathop j\limits^ \wedge + 3\mathop z\limits^ \wedge } \right) \times \left( { - 2\mathop i\limits^ \wedge + 3\mathop j\limits^ \wedge - 3\mathop z\limits^ \wedge } \right)}}{{\sqrt {{2^2} + ( - 3){}^2 + 3{}^2} \times \sqrt {{{( - 2)}^2} + 3{}^2 + ( - 3){}^2} }}\]
Now as we know in dot product \[\mathop i\limits^ \wedge \times \mathop i\limits^ \wedge = 1,\mathop j\limits^ \wedge \times \mathop j\limits^ \wedge = 1,\mathop k\limits^ \wedge \times \mathop k\limits^ \wedge = 1\] and \[\mathop i\limits^ \wedge \times \mathop j\limits^ \wedge \,or\mathop i\limits^ \wedge \times \mathop k\limits^ \wedge = 0,\mathop j\limits^ \wedge \times \mathop i\limits^ \wedge \,or\,\mathop j\limits^ \wedge \times \mathop k\limits^ \wedge = 0\,or\,\mathop k\limits^ \wedge \times \mathop j\limits^ \wedge = 0\], we get
\[ \Rightarrow \cos (\theta ) = \dfrac{{2\mathop i\limits^ \wedge \times \left( { - 2\mathop i\limits^ \wedge } \right) + \left( { - 3} \right)\mathop j\limits^ \wedge \times 3\mathop j\limits^ \wedge + 3\mathop i\limits^ \wedge \times \left( { - 3\mathop i\limits^ \wedge } \right)}}{{\sqrt {{2^2} + ( - 3){}^2 + 3{}^2} \times \sqrt {{{( - 2)}^2} + 3{}^2 + ( - 3){}^2} }}\]
Now as we know in the dot product \[\mathop i\limits^ \wedge \times \mathop i\limits^ \wedge = 1,\mathop j\limits^ \wedge \times \mathop j\limits^ \wedge = 1,\mathop k\limits^ \wedge \times \mathop k\limits^ \wedge = 1\]
\[ \Rightarrow \cos (\theta ) = \dfrac{{ - 4 - 9 - 9}}{{\sqrt {4 + 9 + 9} \times \sqrt {4 + 9 + 9} }}\]
On simplification we get,
\[ \Rightarrow \cos (\theta ) = \dfrac{{ - (4 + 9 + 9)}}{{4 + 9 + 9}}\]
On cancelling common terms, we get
\[ \Rightarrow \cos (\theta ) = - 1\]
On Substituting \[ - 1 = \cos (180^\circ )\], we get
\[ \Rightarrow \cos (\theta ) = \cos (180^\circ )\]
Comparing the above angles.
\[ \Rightarrow \theta = 180^\circ \]
\[ \Rightarrow \Delta = 0\] as \[\sin (180^\circ ) = 0\]
\[ \Rightarrow \] O, A, B are collinear
Now, let A divides OB in \[k:1\]
We know that the section formula for 3d geometry is \[p(x,y,z) = \left( {\dfrac{{m{x_1} + n{x_2}}}{{m + n}},\dfrac{{m{y_1} + n{y_2}}}{{m + n}},\dfrac{{m{z_1} + n{z_2}}}{{m + n}}} \right)\] Where \[m = k,n = 1,x = 2,{x_1} = - 2,{x_2} = 0\]
Now, comparing only the x coordinate of the section formula we get
\[x = \dfrac{{m{x_1} + n{x_2}}}{{m + n}}\]
Dividing numerator and denominator by n on the RHS, we get
\[ \Rightarrow x = \dfrac{{\dfrac{{m{x_1} + n{x_2}}}{n}}}{{\dfrac{{m + n}}{n}}}\]
On simplification we get
\[ \Rightarrow x = \dfrac{{\dfrac{m}{n}{x_1} + {x_2}}}{{\dfrac{m}{n} + 1}}\]
Since we have taken \[\dfrac{m}{n} = k\]
\[ \Rightarrow 2 = \dfrac{{ - 2k + 0}}{{k + 1}}\]
On cross multiplication we get
\[ \Rightarrow 2(k + 1) = - 2k\]
In simplification we get
\[ \Rightarrow 2k + 2 = - 2k\]
On rearranging we get
\[ \Rightarrow 2k + 2k = - 2\]
On simplification we get
\[ \Rightarrow 4k = - 2\]
On dividing the equation by 4, we get,
\[ \Rightarrow k = \dfrac{{ - 1}}{2}\]
\[ \Rightarrow \] A divides OB in \[1:2\] externally
Now for B, Where \[\dfrac{m}{n} = k\], \[x = - 2\], \[{x_1} = - 2\], \[{x_2} = 0\]
\[x = \dfrac{{m{x_1} + n{x_2}}}{{m + n}}\]
Dividing numerator and denominator by n on the RHS
\[ \Rightarrow x = \dfrac{{\dfrac{{m{x_1} + n{x_2}}}{n}}}{{\dfrac{{m + n}}{n}}}\]
On simplification we get
\[ \Rightarrow x = \dfrac{{\dfrac{m}{n}{x_1} + {x_2}}}{{\dfrac{m}{n} + 1}}\]
Since we have taken \[\dfrac{m}{n} = k\]
\[ \Rightarrow - 2 = \dfrac{{2k + 0}}{{k + 1}}\]
On cross multiplication we get
\[ \Rightarrow - 2(k + 1) = 2k\]
On simplification we get
\[ \Rightarrow - 2k - 2 = 2k\]
On rearranging we get
\[ \Rightarrow - 2k - 2k = 2\]
On simplification we get
\[ \Rightarrow - 4k = 2\]
On dividing the equation by -4 we get
\[ \Rightarrow k = \dfrac{{ - 1}}{2}\]
\[ \Rightarrow \] B divides OA in \[1:2\] externally for O
Now for O, Where \[\dfrac{m}{n} = k\], \[x = 0\], \[{x_1} = - 2\], \[{x_2} = 2\]
\[x = \dfrac{{m{x_1} + n{x_2}}}{{m + n}}\]
Dividing numerator and denominator by n on the RHS
\[ \Rightarrow x = \dfrac{{\dfrac{{m{x_1} + n{x_2}}}{n}}}{{\dfrac{{m + n}}{n}}}\]
On simplification we get
\[ \Rightarrow x = \dfrac{{\dfrac{m}{n}{x_1} + {x_2}}}{{\dfrac{m}{n} + 1}}\]
Since we have taken \[\dfrac{m}{n} = k\]
\[ \Rightarrow 0 = \dfrac{{ - 2k + 2}}{{k + 1}}\]
On cross multiplication we get
\[ \Rightarrow 0 = - 2k + 2\]
On rearranging we get
\[ \Rightarrow 2k = 2\]
On dividing the equation by 2 we get,
\[ \Rightarrow k = \dfrac{2}{2}\]
On simplification we get
\[ \Rightarrow k = \dfrac{1}{1}\]
\[ \Rightarrow \] O divides AB in \[1:1\] internally.
Note: In these types of questions, we need to remember that we cannot solve an equation with two variables for the unique solution so we need to convert the equation of section formula’s ratio from \[\dfrac{m}{n}\] to \[\dfrac{k}{1}\] by taking \[k = \dfrac{m}{n}\] hence we get one variable and we can solve the equation.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

