
Show that the points (2, 3, 4), (-1, -2, 1) and (5, 8, 7) are collinear.
Answer
601.5k+ views
Hint: To solve this problem, a distance formula between two points will be used. The distance formula between two points $\left( {{x_1},{y_1},{z_1}} \right),\left( {{x_2},{y_2},{z_2}} \right)$ is-
$\mathrm d=\sqrt{\left({\mathrm x}_2-{\mathrm x}_1\right)^2+\left({\mathrm y}_2-{\mathrm y}_1\right)^2+\left({\mathrm z}_2-{\mathrm z}_1\right)^2}$
Complete step by step answer:
Let the points be A(2, 3, 4), B(-1, -2, 1) and C(5, 8, 7). For these points to be collinear, it is sufficient to prove that the sum of distances between two pairs of points is equal to the distance between the third pair. By applying distance formula in these three points-
$\mathrm{AB}=\sqrt{\left(2-\left(-1\right)\right)^2+\left(3-\left(-2\right)\right)^2+\left(4-1\right)^2}\\=\sqrt{3^2+5^2+3^2}=\sqrt{43}\\\mathrm{CA}=\sqrt{\left(5-2\right)^2+\left(8-3\right)^2+\left(7-4\right)^2}\\=\sqrt{3^2+5^2+3^2}=\sqrt{43}\\\mathrm{BC}=\sqrt{\left(-1-5\right)^2+\left(-2-8\right)^2+\left(1-7\right)^2}\\=\sqrt{\left(-6\right)^2+\left(-10\right)^2+\left(-6\right)^2}=\sqrt{172}=\sqrt{4\times43}=2\sqrt{43}\\\\\mathrm{Clearly}\;\mathrm{we}\;\mathrm{can}\;\mathrm{see}\;\mathrm{that}\;\mathrm{AB}+\mathrm{CA}=\sqrt{43}+\sqrt{43}=2\sqrt{43}=\mathrm{BC}$
Hence, the three points A, B, C are collinear. Hence, proved.
Note: We can also solve this problem by using vector algebra. First we find the two vectors $\overrightarrow {AB} \;and\;\overrightarrow {BC} $. Then we can show that the angle between them is zero.
$\begin{align}
&\overrightarrow {AB} = \left( {2 - \left( { - 1} \right)} \right)\hat i + \left( {3 - \left( { - 2} \right)} \right)\hat j + \left( {4 - 1} \right)\hat k \\
&\overrightarrow {AB} = 3\hat i + 5\hat j + 3\hat k \\
&Similarly, \\
&\overrightarrow {BC} = \left( { - 5 - 1} \right)\hat i + \left( { - 2 - 8} \right)\hat j + \left( {1 - 7} \right)\hat k \\
&\overrightarrow {BC} = - 6\hat i - 10\hat j - 6\hat k \\
\end{align} $
Clearly, it is visible that the direction ratios of $\overrightarrow {AB} \;and\;\overrightarrow {BC} $ are in proportion, hence they have an angle between them as 0. Hence, proved.
$\mathrm d=\sqrt{\left({\mathrm x}_2-{\mathrm x}_1\right)^2+\left({\mathrm y}_2-{\mathrm y}_1\right)^2+\left({\mathrm z}_2-{\mathrm z}_1\right)^2}$
Complete step by step answer:
Let the points be A(2, 3, 4), B(-1, -2, 1) and C(5, 8, 7). For these points to be collinear, it is sufficient to prove that the sum of distances between two pairs of points is equal to the distance between the third pair. By applying distance formula in these three points-
$\mathrm{AB}=\sqrt{\left(2-\left(-1\right)\right)^2+\left(3-\left(-2\right)\right)^2+\left(4-1\right)^2}\\=\sqrt{3^2+5^2+3^2}=\sqrt{43}\\\mathrm{CA}=\sqrt{\left(5-2\right)^2+\left(8-3\right)^2+\left(7-4\right)^2}\\=\sqrt{3^2+5^2+3^2}=\sqrt{43}\\\mathrm{BC}=\sqrt{\left(-1-5\right)^2+\left(-2-8\right)^2+\left(1-7\right)^2}\\=\sqrt{\left(-6\right)^2+\left(-10\right)^2+\left(-6\right)^2}=\sqrt{172}=\sqrt{4\times43}=2\sqrt{43}\\\\\mathrm{Clearly}\;\mathrm{we}\;\mathrm{can}\;\mathrm{see}\;\mathrm{that}\;\mathrm{AB}+\mathrm{CA}=\sqrt{43}+\sqrt{43}=2\sqrt{43}=\mathrm{BC}$
Hence, the three points A, B, C are collinear. Hence, proved.
Note: We can also solve this problem by using vector algebra. First we find the two vectors $\overrightarrow {AB} \;and\;\overrightarrow {BC} $. Then we can show that the angle between them is zero.
$\begin{align}
&\overrightarrow {AB} = \left( {2 - \left( { - 1} \right)} \right)\hat i + \left( {3 - \left( { - 2} \right)} \right)\hat j + \left( {4 - 1} \right)\hat k \\
&\overrightarrow {AB} = 3\hat i + 5\hat j + 3\hat k \\
&Similarly, \\
&\overrightarrow {BC} = \left( { - 5 - 1} \right)\hat i + \left( { - 2 - 8} \right)\hat j + \left( {1 - 7} \right)\hat k \\
&\overrightarrow {BC} = - 6\hat i - 10\hat j - 6\hat k \\
\end{align} $
Clearly, it is visible that the direction ratios of $\overrightarrow {AB} \;and\;\overrightarrow {BC} $ are in proportion, hence they have an angle between them as 0. Hence, proved.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

