
Show that the points (1,-1), (5,2) and (9, 5) are collinear.
Answer
603.6k+ views
Hint: Here we will check whether the given points are collinear or not by using the condition of collinearity i.e., sum of length any two segments equal to the length of the remaining line segment.
Complete step-by-step answer:
Three or more points A, B, C ….. are said to be collinear if they lie on a single straight line.
The given points are
\[A = (1, - 1),B = (5,2){\text{ and }}C = (9,5)\]
Distance between any two points with coordinates $(x_1, y_1)$ and $(x_2, y_2)$ is given by
$ \Rightarrow d = \sqrt {{{({x_2} - {x_1})}^2} + {{({y_2} - {y_2})}^2}} $
Now, calculating the distance between A & B
$AB = \sqrt {{{(5 - 1)}^2} + {{(2 + 1)}^2}} = \sqrt {16 + 9} = \sqrt {25} = 5$
Now, calculating the distance between B & C
$BC = \sqrt {{{(5 - 9)}^2} + {{(2 - 5)}^2}} = \sqrt {16 + 9} = \sqrt {25} = 5$
Now, calculating the distance between A & C
$AC = \sqrt {{{(1 - 9)}^2} + {{( - 1 - 5)}^2}} = \sqrt {64 + 36} = \sqrt {100} = 10$
Clearly, $AC = AB + BC$
Hence, A, B, C are collinear points.
Note: If the sum of the lengths of any two line segments among AB, BC, and AC is equal to the length of the remaining line segment then the points are collinear otherwise not. Another way to find collinearity is to substitute the coordinates of all the three points in the area of triangle formula. If the area value is 0 then the points are collinear else they are non collinear.
Complete step-by-step answer:
Three or more points A, B, C ….. are said to be collinear if they lie on a single straight line.
The given points are
\[A = (1, - 1),B = (5,2){\text{ and }}C = (9,5)\]
Distance between any two points with coordinates $(x_1, y_1)$ and $(x_2, y_2)$ is given by
$ \Rightarrow d = \sqrt {{{({x_2} - {x_1})}^2} + {{({y_2} - {y_2})}^2}} $
Now, calculating the distance between A & B
$AB = \sqrt {{{(5 - 1)}^2} + {{(2 + 1)}^2}} = \sqrt {16 + 9} = \sqrt {25} = 5$
Now, calculating the distance between B & C
$BC = \sqrt {{{(5 - 9)}^2} + {{(2 - 5)}^2}} = \sqrt {16 + 9} = \sqrt {25} = 5$
Now, calculating the distance between A & C
$AC = \sqrt {{{(1 - 9)}^2} + {{( - 1 - 5)}^2}} = \sqrt {64 + 36} = \sqrt {100} = 10$
Clearly, $AC = AB + BC$
Hence, A, B, C are collinear points.
Note: If the sum of the lengths of any two line segments among AB, BC, and AC is equal to the length of the remaining line segment then the points are collinear otherwise not. Another way to find collinearity is to substitute the coordinates of all the three points in the area of triangle formula. If the area value is 0 then the points are collinear else they are non collinear.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Which of the following does not have a fundamental class 10 physics CBSE

What is the full form of POSCO class 10 social science CBSE

State BPT theorem and prove it class 10 maths CBSE

A Gulab jamun contains sugar syrup up to about 30 of class 10 maths CBSE

Write the difference between soap and detergent class 10 chemistry CBSE

A triangle ABC is drawn to circumscribe a circle of class 10 maths CBSE

