
Show that the points (1, 2), (2, 1) and (-2, 5) are collinear.
Answer
587.1k+ views
Hint: To solve this problem, a distance formula between two points will be used. The distance formula between two points $\left( {{x_1},\;{y_1}} \right)\;and\;\left( {{x_2},\;{y_2}} \right)$ is-
$\mathrm d=\sqrt{\left({\mathrm x}_2-{\mathrm x}_1\right)^2+\left({\mathrm y}_2-{\mathrm y}_1\right)^2}$
Let the points be A(1, 2), B(2, 1) and C(-2, 5).
For these points to be collinear, it is sufficient to prove that BA + AC = BC. By applying distance formula in these three points-
$\begin{align}
&BA = \sqrt {{{\left( {2 - 1} \right)}^2} + {{\left( {1 - 2} \right)}^2}} \\
&= \sqrt {{1^2} + {{\left( { - 1} \right)}^2}} = \sqrt 2 \\
&AC = \sqrt {{{\left( {1 - \left( { - 2} \right)} \right)}^2} + {{\left( {2 - 5} \right)}^2}} \\
&= \sqrt {{3^2} + {{\left( { - 3} \right)}^2}} = \sqrt {18} = 3\sqrt 2 \\
&BC = \sqrt {{{\left( {2 - \left( { - 2} \right)} \right)}^2} + {{\left( {1 - 5} \right)}^2}} \\
&= \sqrt {{4^2} + {{\left( { - 4} \right)}^2}} = \sqrt {32} = 4\sqrt 2 \\
&BA + AC = \sqrt 2 + 3\sqrt 2 = 4\sqrt 2 = BC \\
\end{align} $
Hence, the three points A, B, C are collinear. Hence, proved.
Note: The points can also be proved collinear using the triangle formula. We can prove the area of the triangle formed by these three points to be zero, which means they are collinear. The area of triangle formed by three points $\left( {{{\text{x}}_1},\;{{\text{y}}_1}} \right),\left( {{{\text{x}}_2},\;{{\text{y}}_2}} \right)\;and\;\left( {{{\text{x}}_3},\;{{\text{y}}_3}} \right)$ is-
${{\text{x}}_1}\left( {{{\text{y}}_2} - {{\text{y}}_3}} \right) + {{\text{x}}_2}\left( {{{\text{y}}_3} - {{\text{y}}_1}} \right) + {{\text{x}}_3}\left( {{{\text{y}}_1} - {{\text{y}}_2}} \right)$
Applying this formula-
=1(1 - 5) + 2(5 - 2) - 2(2 - 1)
= -4 + 6 - 2
= 0
Hence, proved.
$\mathrm d=\sqrt{\left({\mathrm x}_2-{\mathrm x}_1\right)^2+\left({\mathrm y}_2-{\mathrm y}_1\right)^2}$
Let the points be A(1, 2), B(2, 1) and C(-2, 5).
For these points to be collinear, it is sufficient to prove that BA + AC = BC. By applying distance formula in these three points-
$\begin{align}
&BA = \sqrt {{{\left( {2 - 1} \right)}^2} + {{\left( {1 - 2} \right)}^2}} \\
&= \sqrt {{1^2} + {{\left( { - 1} \right)}^2}} = \sqrt 2 \\
&AC = \sqrt {{{\left( {1 - \left( { - 2} \right)} \right)}^2} + {{\left( {2 - 5} \right)}^2}} \\
&= \sqrt {{3^2} + {{\left( { - 3} \right)}^2}} = \sqrt {18} = 3\sqrt 2 \\
&BC = \sqrt {{{\left( {2 - \left( { - 2} \right)} \right)}^2} + {{\left( {1 - 5} \right)}^2}} \\
&= \sqrt {{4^2} + {{\left( { - 4} \right)}^2}} = \sqrt {32} = 4\sqrt 2 \\
&BA + AC = \sqrt 2 + 3\sqrt 2 = 4\sqrt 2 = BC \\
\end{align} $
Hence, the three points A, B, C are collinear. Hence, proved.
Note: The points can also be proved collinear using the triangle formula. We can prove the area of the triangle formed by these three points to be zero, which means they are collinear. The area of triangle formed by three points $\left( {{{\text{x}}_1},\;{{\text{y}}_1}} \right),\left( {{{\text{x}}_2},\;{{\text{y}}_2}} \right)\;and\;\left( {{{\text{x}}_3},\;{{\text{y}}_3}} \right)$ is-
${{\text{x}}_1}\left( {{{\text{y}}_2} - {{\text{y}}_3}} \right) + {{\text{x}}_2}\left( {{{\text{y}}_3} - {{\text{y}}_1}} \right) + {{\text{x}}_3}\left( {{{\text{y}}_1} - {{\text{y}}_2}} \right)$
Applying this formula-
=1(1 - 5) + 2(5 - 2) - 2(2 - 1)
= -4 + 6 - 2
= 0
Hence, proved.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

