
Show that the ${{n}^{th}}$ co-efficient in the expansion of ${{\left( 1-x \right)}^{-n}}$ is double of ${{\left( n-1 \right)}^{th}}$.
Answer
585k+ views
Hint: We start solving the problem by recalling the expansion of ${{\left( 1-x \right)}^{-n}}$. We then find the coefficient of the ${{\left( r+1 \right)}^{th}}$ term in the expansion. We use this and find the co-efficient of ${{n}^{th}}$ term in the expansion of ${{\left( 1-x \right)}^{-n}}$. We then find the co-efficient of ${{\left( n+1 \right)}^{th}}$ term in the expansion of ${{\left( 1-x \right)}^{-n}}$. We then take the ratio of obtained coefficients and make the necessary calculations to get the required result.
Complete step-by-step solution:
According to the problem, we need prove that the ${{n}^{th}}$ co-efficient in the expansion of ${{\left( 1-x \right)}^{-n}}$ is double of ${{\left( n-1 \right)}^{th}}$.
Let us first recall the expansion of ${{\left( 1-x \right)}^{-n}}$.
We know that the expansion of ${{\left( 1-x \right)}^{-n}}$ is defined as $1+nx+\dfrac{n\left( n+1 \right)}{2!}{{x}^{2}}+\dfrac{n\left( n+1 \right)\left( n+2 \right)}{3!}{{x}^{3}}+.......+\dfrac{n\left( n+1 \right)\left( n+2 \right)...\left( n+r-1 \right)}{r!}{{x}^{r}}+.....\infty $.
So, the co-efficient of ${{\left( r+1 \right)}^{th}}$ term in the expansion is defined as $\dfrac{n\left( n+1 \right)\left( n+2 \right).......\left( n+r-1 \right)}{r!}$.
Let us find the co-efficient of ${{n}^{th}}$ term.
So, we get ${{T}_{n}}=\dfrac{n\left( n+1 \right)\left( n+2 \right).......\left( n+n-1-1 \right)}{\left( n-1 \right)!}$.
$\Rightarrow {{T}_{n}}=\dfrac{n\left( n+1 \right)\left( n+2 \right).......\left( 2n-2 \right)}{\left( n-1 \right)!}$.
Let us multiply the terms in descending order.
$\Rightarrow {{T}_{n}}=\dfrac{\left( 2n-2 \right)\left( 2n-1 \right)\left( 2n \right).......n}{\left( n-1 \right)!}$.
Let us multiply $\left( n-1 \right)!$ in numerator and denominator.
$\Rightarrow {{T}_{n}}=\dfrac{\left( 2n-2 \right)\left( 2n-1 \right)\left( 2n \right).......n}{\left( n-1 \right)!}\times \dfrac{\left( n-1 \right)!}{\left( n-1 \right)!}$.
$\Rightarrow {{T}_{n}}=\dfrac{\left( 2n-2 \right)\left( 2n-1 \right)\left( 2n \right).......n}{\left( n-1 \right)!\left( n-1 \right)!}\times \left( n-1 \right)!$.
We know that $n!=n\times \left( n-1 \right)\times \left( n-2 \right)\times ......\times 2\times 1$.
\[\Rightarrow {{T}_{n}}=\dfrac{\left( 2n-2 \right)\left( 2n-1 \right)\left( 2n \right).......\left( n \right)\left( n-1 \right)\left( n-2 \right)........2.1}{\left( n-1 \right)!\left( n-1 \right)!}\].
We can see that the numerator resembles $\left( 2n-2 \right)!$.
\[\Rightarrow {{T}_{n}}=\dfrac{\left( 2n-2 \right)!}{\left( n-1 \right)!\left( n-1 \right)!}\].
\[\Rightarrow {{T}_{n}}=\dfrac{\left( 2n-2 \right)!}{\left( n-1 \right)!\left( \left( 2n-2 \right)-\left( n-1 \right) \right)!}\].
We can see that this resembles with ${}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}$.
\[\Rightarrow {{T}_{n}}={}^{2n-2}{{C}_{n-1}}\] ---(1).
Let us find the co-efficient of ${{\left( n-1 \right)}^{th}}$ term.
So, we get ${{T}_{n-1}}=\dfrac{\left( n \right)\left( n+1 \right)\left( n+2 \right).......\left( n+n-2-1 \right)}{\left( n-2 \right)!}$.
$\Rightarrow {{T}_{n-1}}=\dfrac{n\left( n+1 \right)\left( n+2 \right).......\left( 2n-3 \right)}{\left( n-2 \right)!}$.
Let us multiply the terms in descending order.
$\Rightarrow {{T}_{n-1}}=\dfrac{\left( 2n-3 \right)\left( 2n-2 \right)\left( 2n-1 \right).......n}{\left( n-2 \right)!}$.
Let us multiply $\left( n-1 \right)!$ in numerator and denominator.
$\Rightarrow {{T}_{n-1}}=\dfrac{\left( 2n-3 \right)\left( 2n-2 \right)\left( 2n-1 \right).......n}{\left( n-2 \right)!}\times \dfrac{\left( n-1 \right)!}{\left( n-1 \right)!}$.
$\Rightarrow {{T}_{n-1}}=\dfrac{\left( 2n-3 \right)\left( 2n-2 \right)\left( 2n-1 \right).......n}{\left( n-2 \right)!\left( n-1 \right)!}\times \left( n-1 \right)!$.
We know that $n!=n\times \left( n-1 \right)\times \left( n-2 \right)\times ......\times 2\times 1$.
\[\Rightarrow {{T}_{n-1}}=\dfrac{\left( 2n-3 \right)\left( 2n-2 \right)\left( 2n-1 \right).......\left( n \right)\left( n-1 \right)\left( n-2 \right)........2.1}{\left( n-2 \right)!\left( n-1 \right)!}\].
We can see that the numerator resembles $\left( 2n-3 \right)!$.
\[\Rightarrow {{T}_{n-1}}=\dfrac{\left( 2n-3 \right)!}{\left( n-2 \right)!\left( n-1 \right)!}\].
\[\Rightarrow {{T}_{n-1}}=\dfrac{\left( 2n-3 \right)!}{\left( n-2 \right)!\left( \left( 2n-3 \right)-\left( n-2 \right) \right)!}\].
We can see that this resembles with ${}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}$.
\[\Rightarrow {{T}_{n-1}}={}^{2n-3}{{C}_{n-2}}\]---(2).
Let us take the ratio of ${{T}_{n}}$ and ${{T}_{n-1}}$.
$\Rightarrow \dfrac{{{T}_{n}}}{{{T}_{n-1}}}=\dfrac{{}^{2n-2}{{C}_{n-1}}}{{}^{2n-3}{{C}_{n-2}}}$.
$\Rightarrow \dfrac{{{T}_{n}}}{{{T}_{n-1}}}=\dfrac{\dfrac{\left( 2n-2 \right)!}{\left( n-1 \right)!\left( n-1 \right)!}}{\dfrac{\left( 2n-3 \right)!}{\left( n-2 \right)!\left( n-1 \right)!}}$.
$\Rightarrow \dfrac{{{T}_{n}}}{{{T}_{n-1}}}=\dfrac{\left( 2n-2 \right)}{\left( n-1 \right)}$.
$\Rightarrow \dfrac{{{T}_{n}}}{{{T}_{n-1}}}=2$.
$\Rightarrow {{T}_{n}}=2\times {{T}_{n-1}}$.
$\therefore$ We have proved that the co-efficient of ${{n}^{th}}$ co-efficient in the expansion of ${{\left( 1-x \right)}^{-n}}$ is double of ${{\left( n-1 \right)}^{th}}$.
Note: We should not take the binomial expansion ${{\left( 1-x \right)}^{-n}}$ as $\dfrac{1}{{{\left( 1-x \right)}^{n}}}$ and expand it in the denominator. We get infinity terms in the binomial expansion of the negative powers of the given terms. We can also verify this result also by taking the values for the variable n. We can also expect problems with expansion of rational powers instead of negative powers that we had in the problem.
Complete step-by-step solution:
According to the problem, we need prove that the ${{n}^{th}}$ co-efficient in the expansion of ${{\left( 1-x \right)}^{-n}}$ is double of ${{\left( n-1 \right)}^{th}}$.
Let us first recall the expansion of ${{\left( 1-x \right)}^{-n}}$.
We know that the expansion of ${{\left( 1-x \right)}^{-n}}$ is defined as $1+nx+\dfrac{n\left( n+1 \right)}{2!}{{x}^{2}}+\dfrac{n\left( n+1 \right)\left( n+2 \right)}{3!}{{x}^{3}}+.......+\dfrac{n\left( n+1 \right)\left( n+2 \right)...\left( n+r-1 \right)}{r!}{{x}^{r}}+.....\infty $.
So, the co-efficient of ${{\left( r+1 \right)}^{th}}$ term in the expansion is defined as $\dfrac{n\left( n+1 \right)\left( n+2 \right).......\left( n+r-1 \right)}{r!}$.
Let us find the co-efficient of ${{n}^{th}}$ term.
So, we get ${{T}_{n}}=\dfrac{n\left( n+1 \right)\left( n+2 \right).......\left( n+n-1-1 \right)}{\left( n-1 \right)!}$.
$\Rightarrow {{T}_{n}}=\dfrac{n\left( n+1 \right)\left( n+2 \right).......\left( 2n-2 \right)}{\left( n-1 \right)!}$.
Let us multiply the terms in descending order.
$\Rightarrow {{T}_{n}}=\dfrac{\left( 2n-2 \right)\left( 2n-1 \right)\left( 2n \right).......n}{\left( n-1 \right)!}$.
Let us multiply $\left( n-1 \right)!$ in numerator and denominator.
$\Rightarrow {{T}_{n}}=\dfrac{\left( 2n-2 \right)\left( 2n-1 \right)\left( 2n \right).......n}{\left( n-1 \right)!}\times \dfrac{\left( n-1 \right)!}{\left( n-1 \right)!}$.
$\Rightarrow {{T}_{n}}=\dfrac{\left( 2n-2 \right)\left( 2n-1 \right)\left( 2n \right).......n}{\left( n-1 \right)!\left( n-1 \right)!}\times \left( n-1 \right)!$.
We know that $n!=n\times \left( n-1 \right)\times \left( n-2 \right)\times ......\times 2\times 1$.
\[\Rightarrow {{T}_{n}}=\dfrac{\left( 2n-2 \right)\left( 2n-1 \right)\left( 2n \right).......\left( n \right)\left( n-1 \right)\left( n-2 \right)........2.1}{\left( n-1 \right)!\left( n-1 \right)!}\].
We can see that the numerator resembles $\left( 2n-2 \right)!$.
\[\Rightarrow {{T}_{n}}=\dfrac{\left( 2n-2 \right)!}{\left( n-1 \right)!\left( n-1 \right)!}\].
\[\Rightarrow {{T}_{n}}=\dfrac{\left( 2n-2 \right)!}{\left( n-1 \right)!\left( \left( 2n-2 \right)-\left( n-1 \right) \right)!}\].
We can see that this resembles with ${}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}$.
\[\Rightarrow {{T}_{n}}={}^{2n-2}{{C}_{n-1}}\] ---(1).
Let us find the co-efficient of ${{\left( n-1 \right)}^{th}}$ term.
So, we get ${{T}_{n-1}}=\dfrac{\left( n \right)\left( n+1 \right)\left( n+2 \right).......\left( n+n-2-1 \right)}{\left( n-2 \right)!}$.
$\Rightarrow {{T}_{n-1}}=\dfrac{n\left( n+1 \right)\left( n+2 \right).......\left( 2n-3 \right)}{\left( n-2 \right)!}$.
Let us multiply the terms in descending order.
$\Rightarrow {{T}_{n-1}}=\dfrac{\left( 2n-3 \right)\left( 2n-2 \right)\left( 2n-1 \right).......n}{\left( n-2 \right)!}$.
Let us multiply $\left( n-1 \right)!$ in numerator and denominator.
$\Rightarrow {{T}_{n-1}}=\dfrac{\left( 2n-3 \right)\left( 2n-2 \right)\left( 2n-1 \right).......n}{\left( n-2 \right)!}\times \dfrac{\left( n-1 \right)!}{\left( n-1 \right)!}$.
$\Rightarrow {{T}_{n-1}}=\dfrac{\left( 2n-3 \right)\left( 2n-2 \right)\left( 2n-1 \right).......n}{\left( n-2 \right)!\left( n-1 \right)!}\times \left( n-1 \right)!$.
We know that $n!=n\times \left( n-1 \right)\times \left( n-2 \right)\times ......\times 2\times 1$.
\[\Rightarrow {{T}_{n-1}}=\dfrac{\left( 2n-3 \right)\left( 2n-2 \right)\left( 2n-1 \right).......\left( n \right)\left( n-1 \right)\left( n-2 \right)........2.1}{\left( n-2 \right)!\left( n-1 \right)!}\].
We can see that the numerator resembles $\left( 2n-3 \right)!$.
\[\Rightarrow {{T}_{n-1}}=\dfrac{\left( 2n-3 \right)!}{\left( n-2 \right)!\left( n-1 \right)!}\].
\[\Rightarrow {{T}_{n-1}}=\dfrac{\left( 2n-3 \right)!}{\left( n-2 \right)!\left( \left( 2n-3 \right)-\left( n-2 \right) \right)!}\].
We can see that this resembles with ${}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}$.
\[\Rightarrow {{T}_{n-1}}={}^{2n-3}{{C}_{n-2}}\]---(2).
Let us take the ratio of ${{T}_{n}}$ and ${{T}_{n-1}}$.
$\Rightarrow \dfrac{{{T}_{n}}}{{{T}_{n-1}}}=\dfrac{{}^{2n-2}{{C}_{n-1}}}{{}^{2n-3}{{C}_{n-2}}}$.
$\Rightarrow \dfrac{{{T}_{n}}}{{{T}_{n-1}}}=\dfrac{\dfrac{\left( 2n-2 \right)!}{\left( n-1 \right)!\left( n-1 \right)!}}{\dfrac{\left( 2n-3 \right)!}{\left( n-2 \right)!\left( n-1 \right)!}}$.
$\Rightarrow \dfrac{{{T}_{n}}}{{{T}_{n-1}}}=\dfrac{\left( 2n-2 \right)}{\left( n-1 \right)}$.
$\Rightarrow \dfrac{{{T}_{n}}}{{{T}_{n-1}}}=2$.
$\Rightarrow {{T}_{n}}=2\times {{T}_{n-1}}$.
$\therefore$ We have proved that the co-efficient of ${{n}^{th}}$ co-efficient in the expansion of ${{\left( 1-x \right)}^{-n}}$ is double of ${{\left( n-1 \right)}^{th}}$.
Note: We should not take the binomial expansion ${{\left( 1-x \right)}^{-n}}$ as $\dfrac{1}{{{\left( 1-x \right)}^{n}}}$ and expand it in the denominator. We get infinity terms in the binomial expansion of the negative powers of the given terms. We can also verify this result also by taking the values for the variable n. We can also expect problems with expansion of rational powers instead of negative powers that we had in the problem.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

