
Show that the middle term in the expansion of ${{(1+x)}^{2n}}$ is $\dfrac{1\cdot 3\cdot 5\cdot \ldots \cdot (2n-1)}{n!}\cdot {{2}^{n}}{{x}^{n}}$ , where $n\in \mathbb{N}$.
Answer
572.7k+ views
Hint: We will compare the given expansion of ${{(1+x)}^{2n}}$with ${{(a+b)}^{k}}$. We will find the index of the term that is the middle term. Then, we will use the formula of the general term of the expansion to find the middle term. Simplifying this term will lead us to the desired answer.
Complete step by step answer:
For the expansion of ${{(a+b)}^{k}}$, the middle term is the ${{\left( \dfrac{k}{2}+1 \right)}^{th}}$ term if $k$ is even. Comparing ${{(1+x)}^{2n}}$ with ${{(a+b)}^{k}}$, we have $a=1$, $b=x$, $k=2n$. The index of the middle term for ${{(1+x)}^{2n}}$ is $\left( \dfrac{2n}{2}+1 \right)=n+1$.
The formula for the general term of ${{(a+b)}^{k}}$ is as follows,
${{T}_{r+1}}={}^{k}{{C}_{r}}\cdot {{a}^{k-r}}\cdot {{b}^{r}}$
Substituting $a=1$, $b=x$, $k=2n$and $r=n$, we get the following expression,
$\begin{align}
& {{T}_{n+1}}={}^{2n}{{C}_{n}}\cdot {{(1)}^{2n-n}}\cdot {{x}^{n}} \\
& =\dfrac{2n!}{n!\left( 2n-n \right)!}\cdot {{(1)}^{n}}\cdot {{x}^{n}} \\
& =\dfrac{2n!}{n!n!}\cdot {{x}^{n}}
\end{align}$
So, the middle term of ${{(1+x)}^{2n}}$ is ${{T}_{n+1}}=\dfrac{2n!}{n!n!}\cdot {{x}^{n}}$. Now, we will simplify the middle term in the following manner,
First we will expand the factorials in the numerator.
${{T}_{n+1}}=\dfrac{1\cdot 2\cdot \ldots \cdot (2n-1)\cdot (2n)}{n!n!}\cdot {{x}^{n}}$
We will separate the odd terms and the even terms in the numerator.
${{T}_{n+1}}=\dfrac{\left( 1\cdot 3\cdot \ldots \cdot (2n-1) \right)\cdot \left( 2\cdot 4\cdot \ldots \cdot 2n \right)}{n!n!}\cdot {{x}^{n}}$
The collected even terms in the numerator can be rewritten as multiples of 2 and then factor out all the 2's in the following manner,
$\begin{align}
& {{T}_{n+1}}=\dfrac{\left( 1\cdot 3\cdot \ldots \cdot (2n-1) \right)\cdot \left( 2\cdot 1\times 2\cdot 2\times 3\cdot \ldots \cdot 2\times (n-1)\cdot 2\times n \right)}{n!n!}\cdot {{x}^{n}} \\
& =\dfrac{\left( 1\cdot 3\cdot \ldots \cdot (2n-1) \right)\cdot \left( 1\cdot 2\cdot 3\cdot \ldots \cdot (n-1)\cdot n \right)\cdot {{2}^{n}}}{n!n!}\cdot {{x}^{n}} \\
& =\dfrac{\left( 1\cdot 3\cdot \ldots \cdot (2n-1) \right)\cdot n!}{n!n!}\cdot {{2}^{n}}{{x}^{n}} \\
& =\dfrac{\left( 1\cdot 3\cdot \ldots \cdot (2n-1) \right)}{n!}\cdot {{2}^{n}}{{x}^{n}}
\end{align}$
Hence, proved.
Note: The formula for the general term of the expansion of ${{(a+b)}^{k}}$ is the main part of this question. If $k$ is odd, then the middle term is the ${{\left( \dfrac{n+1}{2} \right)}^{th}}$ term. We should be able to observe how to factorize the numerator of the middle term in order to get the desired expression.
Complete step by step answer:
For the expansion of ${{(a+b)}^{k}}$, the middle term is the ${{\left( \dfrac{k}{2}+1 \right)}^{th}}$ term if $k$ is even. Comparing ${{(1+x)}^{2n}}$ with ${{(a+b)}^{k}}$, we have $a=1$, $b=x$, $k=2n$. The index of the middle term for ${{(1+x)}^{2n}}$ is $\left( \dfrac{2n}{2}+1 \right)=n+1$.
The formula for the general term of ${{(a+b)}^{k}}$ is as follows,
${{T}_{r+1}}={}^{k}{{C}_{r}}\cdot {{a}^{k-r}}\cdot {{b}^{r}}$
Substituting $a=1$, $b=x$, $k=2n$and $r=n$, we get the following expression,
$\begin{align}
& {{T}_{n+1}}={}^{2n}{{C}_{n}}\cdot {{(1)}^{2n-n}}\cdot {{x}^{n}} \\
& =\dfrac{2n!}{n!\left( 2n-n \right)!}\cdot {{(1)}^{n}}\cdot {{x}^{n}} \\
& =\dfrac{2n!}{n!n!}\cdot {{x}^{n}}
\end{align}$
So, the middle term of ${{(1+x)}^{2n}}$ is ${{T}_{n+1}}=\dfrac{2n!}{n!n!}\cdot {{x}^{n}}$. Now, we will simplify the middle term in the following manner,
First we will expand the factorials in the numerator.
${{T}_{n+1}}=\dfrac{1\cdot 2\cdot \ldots \cdot (2n-1)\cdot (2n)}{n!n!}\cdot {{x}^{n}}$
We will separate the odd terms and the even terms in the numerator.
${{T}_{n+1}}=\dfrac{\left( 1\cdot 3\cdot \ldots \cdot (2n-1) \right)\cdot \left( 2\cdot 4\cdot \ldots \cdot 2n \right)}{n!n!}\cdot {{x}^{n}}$
The collected even terms in the numerator can be rewritten as multiples of 2 and then factor out all the 2's in the following manner,
$\begin{align}
& {{T}_{n+1}}=\dfrac{\left( 1\cdot 3\cdot \ldots \cdot (2n-1) \right)\cdot \left( 2\cdot 1\times 2\cdot 2\times 3\cdot \ldots \cdot 2\times (n-1)\cdot 2\times n \right)}{n!n!}\cdot {{x}^{n}} \\
& =\dfrac{\left( 1\cdot 3\cdot \ldots \cdot (2n-1) \right)\cdot \left( 1\cdot 2\cdot 3\cdot \ldots \cdot (n-1)\cdot n \right)\cdot {{2}^{n}}}{n!n!}\cdot {{x}^{n}} \\
& =\dfrac{\left( 1\cdot 3\cdot \ldots \cdot (2n-1) \right)\cdot n!}{n!n!}\cdot {{2}^{n}}{{x}^{n}} \\
& =\dfrac{\left( 1\cdot 3\cdot \ldots \cdot (2n-1) \right)}{n!}\cdot {{2}^{n}}{{x}^{n}}
\end{align}$
Hence, proved.
Note: The formula for the general term of the expansion of ${{(a+b)}^{k}}$ is the main part of this question. If $k$ is odd, then the middle term is the ${{\left( \dfrac{n+1}{2} \right)}^{th}}$ term. We should be able to observe how to factorize the numerator of the middle term in order to get the desired expression.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

