
Show that the locus of the poles of chords which subtend a constant angle a at the vertex is the curve,
\[{{\left( x+4a \right)}^{2}}=4{{\cot }^{2}}a\left( {{y}^{2}}-4ax \right)\]
If the constant angle be a right angle the locus is a straight line perpendicular to the axis.
Answer
493.5k+ views
Hint: This question can be solved by writing the equation of the chord joining two points on the parabola and using the formula of angle subtended by a chord on its vertex.
On the parabola ${{y}^{2}}=4ax$, a point can be assumed having coordinates $\left( a{{t}^{2}},2at \right)$ where ‘t’ is a parameter.
Complete step-by-step answer:
Let us assume two points on a parabola ${{y}^{2}}=4ax$ $A\left( at_{1}^{2},2a{{t}_{1}} \right)\ and\ B\left( at_{2}^{2},2a{{t}_{2}} \right)$.
The equation of chord joining points $\left( at_{1}^{2},2a{{t}_{1}} \right)\ and\ \left( at_{2}^{2},2a{{t}_{2}} \right)$ has the equation,
$\left( y-2a{{t}_{2}} \right)=\dfrac{2a{{t}_{2}}-2a{{t}_{1}}}{at_{2}^{2}-at_{1}^{2}}\times \left( x-at_{2}^{2} \right)$
Equation of a line joining two points $\left( {{x}_{1}},{{y}_{1}} \right)\ and\ \left( {{x}_{2}},{{y}_{2}} \right)$ is $\left( y-{{y}_{1}} \right)=\left( \dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}} \right)\left( x-{{x}_{1}} \right)$.
So, equation of the line joining $A\left( at_{1}^{2},2a{{t}_{1}} \right)\ and\ B\left( at_{2}^{2},2a{{t}_{2}} \right)$.
$\begin{align}
& \left( y-2a{{t}_{2}} \right)=\dfrac{2a{{t}_{2}}-2a{{t}_{1}}}{at_{2}^{2}-at_{1}^{2}}\times \left( x-at_{2}^{2} \right) \\
& \Rightarrow \left( y-2a{{t}_{2}} \right)=\dfrac{2a\left( {{t}_{2}}-{{t}_{1}} \right)}{a\left( {{t}_{2}}-{{t}_{1}} \right)\left( {{t}_{2}}+{{t}_{1}} \right)}\times \left( x-at_{2}^{2} \right) \\
& \Rightarrow \left( y-2a{{t}_{2}} \right)=\dfrac{2}{{{t}_{2}}+{{t}_{1}}}\times \left( x-at_{2}^{2} \right) \\
& \Rightarrow \left( y-2a{{t}_{2}} \right)\left( {{t}_{2}}+{{t}_{1}} \right)=2\left( x-at_{2}^{2} \right) \\
\end{align}$
Given the chord subtends angle ‘a’ at the vertex.
Angle between two lines is,
$\begin{align}
& \tan a=\dfrac{{{m}_{1}}-{{m}_{2}}}{1+{{m}_{1}}{{m}_{2}}} \\
& where\ {{m}_{1}}=slope\ of\ line\ OA \\
& {{m}_{2}}=slope\ of\ line\ OB \\
\end{align}$
Slope of line passing through points $\left( {{x}_{1}},{{y}_{1}} \right)\ and\ \left( {{x}_{2}},{{y}_{2}} \right)=\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}$
$\begin{align}
& Slope\ of\ OA=\dfrac{2at_{1}^{2}-0}{at_{1}^{2}-0}=\dfrac{2}{{{t}_{1}}}={{m}_{1}} \\
& Slope\ of\ OB=\dfrac{2at_{2}^{2}-0}{at_{2}^{2}-0}=\dfrac{2}{{{t}_{2}}}={{m}_{2}} \\
\end{align}$
Comparing the equation $yk=2ax+2ah$ with the equation of the chord, we have,
$\dfrac{{{t}_{1}}+{{t}_{2}}}{k}=\dfrac{2}{2a}=\dfrac{2a{{t}_{1}}{{t}_{2}}}{2ah}...........\left( 2 \right)$
From this equation,
$\begin{align}
& \Rightarrow h=a{{t}_{1}}{{t}_{2}}\ and \\
& k=a\left( {{t}_{1}}+{{t}_{2}} \right) \\
\end{align}$
From equation (1) and (2),
$\begin{align}
& {{t}_{1}}{{t}_{2}}=\dfrac{h}{a}\ and\ \left( {{t}_{1}}+{{t}_{2}} \right)=\dfrac{k}{a} \\
& Formula:{{\left( a+b \right)}^{2}}-{{\left( a-b \right)}^{2}}=4ab \\
& {{\left( {{t}_{1}}+{{t}_{2}} \right)}^{2}}-{{\left( {{t}_{1}}-{{t}_{2}} \right)}^{2}}=4{{t}_{1}}{{t}_{2}} \\
& \Rightarrow \sqrt{\dfrac{{{k}^{2}}}{{{a}^{2}}}-\dfrac{4h}{a}}=\left( {{t}_{1}}-{{t}_{2}} \right) \\
\end{align}$
Equation (1) becomes,
$2\sqrt{\dfrac{{{k}^{2}}}{{{a}^{2}}}-\dfrac{4h}{a}}=\tan a\times \left( 4+\dfrac{h}{a} \right)$
On squaring both sides,
$\begin{align}
& \Rightarrow 4\left( \dfrac{{{k}^{2}}}{{{a}^{2}}}-\dfrac{4h}{a} \right)={{\tan }^{2}}a{{\left( \dfrac{h}{a}+4 \right)}^{2}} \\
& \Rightarrow 4\left( \dfrac{{{k}^{2}}-4ah}{{{a}^{2}}} \right)={{\tan }^{2}}a{{\left( \dfrac{h+4a}{a} \right)}^{2}} \\
& \Rightarrow \dfrac{4\left( {{k}^{2}}-4ah \right)}{{{a}^{2}}}={{\tan }^{2}}a\dfrac{{{\left( h+4a \right)}^{2}}}{{{a}^{2}}} \\
& \Rightarrow 4\left( {{k}^{2}}-4ah \right)={{\tan }^{2}}a{{\left( h+4a \right)}^{2}} \\
\end{align}$
On replacing ‘h’ with ‘x’ and ‘k’ with ‘y’,
$\begin{align}
& 4\left( {{y}^{2}}-4ax \right)={{\tan }^{2}}a{{\left( x+4a \right)}^{2}} \\
& \Rightarrow {{\left( x+4a \right)}^{2}}=\dfrac{4}{{{\tan }^{2}}a}\left( {{y}^{2}}-4ax \right) \\
& \Rightarrow {{\left( x+4a \right)}^{2}}=4{{\cot }^{2}}a\left( {{y}^{2}}-4ax \right) \\
\end{align}$
Hence, the required locus is: ${{\left( x+4a \right)}^{2}}=4{{\cot }^{2}}a\left( {{y}^{2}}-4ax \right)$
If the constant angle is $90{}^\circ $, then
$\begin{align}
& \tan a=\tan 90{}^\circ =Not\ defined \\
& \Rightarrow \cot 90{}^\circ =0 \\
\end{align}$
So, the locus will be ${{\left( x+4a \right)}^{2}}=0$
$\begin{align}
& \Rightarrow x+4a=0 \\
& \Rightarrow x=-4a \\
\end{align}$
This is a line perpendicular to the axis.
Hence, the locus will be a straight line perpendicular to the axis when the constant angle will be a right angle.
Note: This is a simple question in which we have to assume points on parabola in parametric form and obtain relation between the parameters from the given information in the question. Be careful while writing the parametric forms and solving the equations.
On the parabola ${{y}^{2}}=4ax$, a point can be assumed having coordinates $\left( a{{t}^{2}},2at \right)$ where ‘t’ is a parameter.
Complete step-by-step answer:
Let us assume two points on a parabola ${{y}^{2}}=4ax$ $A\left( at_{1}^{2},2a{{t}_{1}} \right)\ and\ B\left( at_{2}^{2},2a{{t}_{2}} \right)$.
The equation of chord joining points $\left( at_{1}^{2},2a{{t}_{1}} \right)\ and\ \left( at_{2}^{2},2a{{t}_{2}} \right)$ has the equation,
$\left( y-2a{{t}_{2}} \right)=\dfrac{2a{{t}_{2}}-2a{{t}_{1}}}{at_{2}^{2}-at_{1}^{2}}\times \left( x-at_{2}^{2} \right)$
Equation of a line joining two points $\left( {{x}_{1}},{{y}_{1}} \right)\ and\ \left( {{x}_{2}},{{y}_{2}} \right)$ is $\left( y-{{y}_{1}} \right)=\left( \dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}} \right)\left( x-{{x}_{1}} \right)$.
So, equation of the line joining $A\left( at_{1}^{2},2a{{t}_{1}} \right)\ and\ B\left( at_{2}^{2},2a{{t}_{2}} \right)$.
$\begin{align}
& \left( y-2a{{t}_{2}} \right)=\dfrac{2a{{t}_{2}}-2a{{t}_{1}}}{at_{2}^{2}-at_{1}^{2}}\times \left( x-at_{2}^{2} \right) \\
& \Rightarrow \left( y-2a{{t}_{2}} \right)=\dfrac{2a\left( {{t}_{2}}-{{t}_{1}} \right)}{a\left( {{t}_{2}}-{{t}_{1}} \right)\left( {{t}_{2}}+{{t}_{1}} \right)}\times \left( x-at_{2}^{2} \right) \\
& \Rightarrow \left( y-2a{{t}_{2}} \right)=\dfrac{2}{{{t}_{2}}+{{t}_{1}}}\times \left( x-at_{2}^{2} \right) \\
& \Rightarrow \left( y-2a{{t}_{2}} \right)\left( {{t}_{2}}+{{t}_{1}} \right)=2\left( x-at_{2}^{2} \right) \\
\end{align}$

Given the chord subtends angle ‘a’ at the vertex.
Angle between two lines is,
$\begin{align}
& \tan a=\dfrac{{{m}_{1}}-{{m}_{2}}}{1+{{m}_{1}}{{m}_{2}}} \\
& where\ {{m}_{1}}=slope\ of\ line\ OA \\
& {{m}_{2}}=slope\ of\ line\ OB \\
\end{align}$
Slope of line passing through points $\left( {{x}_{1}},{{y}_{1}} \right)\ and\ \left( {{x}_{2}},{{y}_{2}} \right)=\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}$
$\begin{align}
& Slope\ of\ OA=\dfrac{2at_{1}^{2}-0}{at_{1}^{2}-0}=\dfrac{2}{{{t}_{1}}}={{m}_{1}} \\
& Slope\ of\ OB=\dfrac{2at_{2}^{2}-0}{at_{2}^{2}-0}=\dfrac{2}{{{t}_{2}}}={{m}_{2}} \\
\end{align}$
Comparing the equation $yk=2ax+2ah$ with the equation of the chord, we have,
$\dfrac{{{t}_{1}}+{{t}_{2}}}{k}=\dfrac{2}{2a}=\dfrac{2a{{t}_{1}}{{t}_{2}}}{2ah}...........\left( 2 \right)$
From this equation,
$\begin{align}
& \Rightarrow h=a{{t}_{1}}{{t}_{2}}\ and \\
& k=a\left( {{t}_{1}}+{{t}_{2}} \right) \\
\end{align}$
From equation (1) and (2),
$\begin{align}
& {{t}_{1}}{{t}_{2}}=\dfrac{h}{a}\ and\ \left( {{t}_{1}}+{{t}_{2}} \right)=\dfrac{k}{a} \\
& Formula:{{\left( a+b \right)}^{2}}-{{\left( a-b \right)}^{2}}=4ab \\
& {{\left( {{t}_{1}}+{{t}_{2}} \right)}^{2}}-{{\left( {{t}_{1}}-{{t}_{2}} \right)}^{2}}=4{{t}_{1}}{{t}_{2}} \\
& \Rightarrow \sqrt{\dfrac{{{k}^{2}}}{{{a}^{2}}}-\dfrac{4h}{a}}=\left( {{t}_{1}}-{{t}_{2}} \right) \\
\end{align}$
Equation (1) becomes,
$2\sqrt{\dfrac{{{k}^{2}}}{{{a}^{2}}}-\dfrac{4h}{a}}=\tan a\times \left( 4+\dfrac{h}{a} \right)$
On squaring both sides,
$\begin{align}
& \Rightarrow 4\left( \dfrac{{{k}^{2}}}{{{a}^{2}}}-\dfrac{4h}{a} \right)={{\tan }^{2}}a{{\left( \dfrac{h}{a}+4 \right)}^{2}} \\
& \Rightarrow 4\left( \dfrac{{{k}^{2}}-4ah}{{{a}^{2}}} \right)={{\tan }^{2}}a{{\left( \dfrac{h+4a}{a} \right)}^{2}} \\
& \Rightarrow \dfrac{4\left( {{k}^{2}}-4ah \right)}{{{a}^{2}}}={{\tan }^{2}}a\dfrac{{{\left( h+4a \right)}^{2}}}{{{a}^{2}}} \\
& \Rightarrow 4\left( {{k}^{2}}-4ah \right)={{\tan }^{2}}a{{\left( h+4a \right)}^{2}} \\
\end{align}$
On replacing ‘h’ with ‘x’ and ‘k’ with ‘y’,
$\begin{align}
& 4\left( {{y}^{2}}-4ax \right)={{\tan }^{2}}a{{\left( x+4a \right)}^{2}} \\
& \Rightarrow {{\left( x+4a \right)}^{2}}=\dfrac{4}{{{\tan }^{2}}a}\left( {{y}^{2}}-4ax \right) \\
& \Rightarrow {{\left( x+4a \right)}^{2}}=4{{\cot }^{2}}a\left( {{y}^{2}}-4ax \right) \\
\end{align}$
Hence, the required locus is: ${{\left( x+4a \right)}^{2}}=4{{\cot }^{2}}a\left( {{y}^{2}}-4ax \right)$
If the constant angle is $90{}^\circ $, then
$\begin{align}
& \tan a=\tan 90{}^\circ =Not\ defined \\
& \Rightarrow \cot 90{}^\circ =0 \\
\end{align}$
So, the locus will be ${{\left( x+4a \right)}^{2}}=0$
$\begin{align}
& \Rightarrow x+4a=0 \\
& \Rightarrow x=-4a \\
\end{align}$
This is a line perpendicular to the axis.
Hence, the locus will be a straight line perpendicular to the axis when the constant angle will be a right angle.
Note: This is a simple question in which we have to assume points on parabola in parametric form and obtain relation between the parameters from the given information in the question. Be careful while writing the parametric forms and solving the equations.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Trending doubts
1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

Explain zero factorial class 11 maths CBSE
