
Show that the line integral $ \int\limits_{-1,2}^{3,1}{\left( {{y}^{2}}+2xy \right)dx+\left( {{x}^{2}}+2xy \right)dy} $ is independent of path and evaluate it.
Answer
527.1k+ views
Hint: We know that the integration of the equation for double integral will be variable based. Keeping others constant we integrate using the formula of $ \int{{{x}^{n}}dx}=\dfrac{{{x}^{n+1}}}{n+1}+c $ . Then we add them to find the final solution.
Complete step by step solution:
When we are integrating with respect to y all the other variables become constant.
Similar thing happens for when we are integrating with respect to x.
Therefore, we break the integration in two parts.
We complete the integration and then use the limits for the respective variables.
We get $ \int\limits_{-1,2}^{3,1}{\left( {{y}^{2}}+2xy \right)dx+\left( {{x}^{2}}+2xy \right)dy}=\int\limits_{-1,2}^{3,1}{\left( {{y}^{2}}+2xy \right)dx}+\int\limits_{-1,2}^{3,1}{\left( {{x}^{2}}+2xy \right)dy} $
For $ {{y}^{2}}+2xy $ , $ {{y}^{2}} $ and $ 2y $ will be treated as constant.
We also use the formula of $ \int{{{x}^{n}}dx}=\dfrac{{{x}^{n+1}}}{n+1}+c $ .
So, $ \int\limits_{-1,2}^{3,1}{\left( {{y}^{2}}+2xy \right)dx}=\left[ {{y}^{2}}x+y{{x}^{2}} \right]_{-1,2}^{3,1} $ .
Now we put the values for the variables and get
$ \int\limits_{-1,2}^{3,1}{\left( {{y}^{2}}+2xy \right)dx}=\left[ 3+9+4-2 \right]=14 $
For $ {{x}^{2}}+2xy $ , $ {{x}^{2}} $ and $ 2x $ will be treated as constant.
We also use the formula of $ \int{{{x}^{n}}dx}=\dfrac{{{x}^{n+1}}}{n+1}+c $ .
So, $ \int\limits_{-1,2}^{3,1}{\left( {{x}^{2}}+2xy \right)dy}=\left[ {{x}^{2}}y+x{{y}^{2}} \right]_{-1,2}^{3,1} $ .
Now we put the values for the variables and get
$ \int\limits_{-1,2}^{3,1}{\left( {{x}^{2}}+2xy \right)dy}=\left[ 9+3-2+4 \right]=14 $
Therefore, $ \int\limits_{-1,2}^{3,1}{\left( {{y}^{2}}+2xy \right)dx+\left( {{x}^{2}}+2xy \right)dy}=14+14=28 $ .
The line integral $ \int\limits_{-1,2}^{3,1}{\left( {{y}^{2}}+2xy \right)dx+\left( {{x}^{2}}+2xy \right)dy} $ is independent of path.
Note: The path integral of the equation is used for vector calculation. In qualitative terms, a line integral in vector calculus can be thought of as a measure of the total effect of a given tensor field along a given curve.
Complete step by step solution:
When we are integrating with respect to y all the other variables become constant.
Similar thing happens for when we are integrating with respect to x.
Therefore, we break the integration in two parts.
We complete the integration and then use the limits for the respective variables.
We get $ \int\limits_{-1,2}^{3,1}{\left( {{y}^{2}}+2xy \right)dx+\left( {{x}^{2}}+2xy \right)dy}=\int\limits_{-1,2}^{3,1}{\left( {{y}^{2}}+2xy \right)dx}+\int\limits_{-1,2}^{3,1}{\left( {{x}^{2}}+2xy \right)dy} $
For $ {{y}^{2}}+2xy $ , $ {{y}^{2}} $ and $ 2y $ will be treated as constant.
We also use the formula of $ \int{{{x}^{n}}dx}=\dfrac{{{x}^{n+1}}}{n+1}+c $ .
So, $ \int\limits_{-1,2}^{3,1}{\left( {{y}^{2}}+2xy \right)dx}=\left[ {{y}^{2}}x+y{{x}^{2}} \right]_{-1,2}^{3,1} $ .
Now we put the values for the variables and get
$ \int\limits_{-1,2}^{3,1}{\left( {{y}^{2}}+2xy \right)dx}=\left[ 3+9+4-2 \right]=14 $
For $ {{x}^{2}}+2xy $ , $ {{x}^{2}} $ and $ 2x $ will be treated as constant.
We also use the formula of $ \int{{{x}^{n}}dx}=\dfrac{{{x}^{n+1}}}{n+1}+c $ .
So, $ \int\limits_{-1,2}^{3,1}{\left( {{x}^{2}}+2xy \right)dy}=\left[ {{x}^{2}}y+x{{y}^{2}} \right]_{-1,2}^{3,1} $ .
Now we put the values for the variables and get
$ \int\limits_{-1,2}^{3,1}{\left( {{x}^{2}}+2xy \right)dy}=\left[ 9+3-2+4 \right]=14 $
Therefore, $ \int\limits_{-1,2}^{3,1}{\left( {{y}^{2}}+2xy \right)dx+\left( {{x}^{2}}+2xy \right)dy}=14+14=28 $ .
The line integral $ \int\limits_{-1,2}^{3,1}{\left( {{y}^{2}}+2xy \right)dx+\left( {{x}^{2}}+2xy \right)dy} $ is independent of path.
Note: The path integral of the equation is used for vector calculation. In qualitative terms, a line integral in vector calculus can be thought of as a measure of the total effect of a given tensor field along a given curve.
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

