
Show that the highest power of n which is contained in $ {n^r} - 1 $ is equal to $ \dfrac{{{n^r} - nr + r - 1}}{{n - 1}} $
Answer
587.7k+ views
Hint: o find the highest power p of the number n where n is any positive integer use Legendre’s formula. Substitute $ {n^r} - 1 $ and n appropriately in the below formula.
Formula used: Legendre’s formula $ {h_p}\left( f \right) = \sum\limits_{i = 1}^\infty {\left\lfloor {\dfrac{f}{{{p^i}}}} \right\rfloor } $ where $ {h_p}\left( f \right) $ is the exponent of the largest power of n which uses the floor function, f is $ {n^r} - 1 $ which should be a positive integer and p is n and i vary from 1 to infinity.
Complete step-by-step answer:
We are given that to find the highest power of n in $ {n^r} - 1 $ and to prove the values is $ \dfrac{{{n^r} - nr + r - 1}}{{n - 1}} $
Using Legendre’s formula, we can find the exponent of the highest power of n contained in $ {n^r} - 1 $
$
{h_p}\left( f \right) = \sum\limits_{i = 1}^\infty {\left\lfloor {\dfrac{f}{{{p^i}}}} \right\rfloor } \\
p = n,f = {n^r} - 1 \\
{h_n}\left( {{n^r} - 1} \right) = \sum\limits_{i = 1}^\infty {\left\lfloor {\dfrac{{{n^r} - 1}}{{{n^i}}}} \right\rfloor } \\
= \left\lfloor {\dfrac{{{n^r} - 1}}{{{n^1}}}} \right\rfloor + \left\lfloor {\dfrac{{{n^r} - 1}}{{{n^2}}}} \right\rfloor + \left\lfloor {\dfrac{{{n^r} - 1}}{{{n^3}}}} \right\rfloor + ....... + \left\lfloor {\dfrac{{{n^r} - 1}}{{{n^r}}}} \right\rfloor \\
$
i must be from 1 to r, because when i value exceeds r, the exponent values of n will be less than 1.
So i is from 1 to r.
$
= \sum\limits_{k = 1}^r {\left\lfloor {\dfrac{{{n^r} - 1}}{{{n^k}}}} \right\rfloor } ,r \geqslant k \\
= \sum\limits_{k = 1}^r {\left\lfloor {\dfrac{{{n^r}}}{{{n^k}}} - \dfrac{1}{{{n^k}}}} \right\rfloor } \\
= \sum\limits_{k = 1}^r {\left\lfloor {{n^{r - k}} - \dfrac{1}{{{n^k}}}} \right\rfloor } \\
\left( {\because \dfrac{{{a^m}}}{{{a^n}}} = {a^{m - n}},m \geqslant n} \right) \\
= \sum\limits_{k = 1}^r {\left\lfloor {{n^{r - k}}} \right\rfloor } + \sum\limits_{k = 1}^r {\left\lfloor { - \dfrac{1}{{{n^k}}}} \right\rfloor } \\
= {n^{r - 1}} + {n^{r - 2}} + {n^{r - 3}} + ... + {n^{r - r}} - \dfrac{1}{{{n^1}}} - \dfrac{1}{{{n^2}}} - \dfrac{1}{{{n^3}}} - ... - \dfrac{1}{{{n^r}}} \\
= \dfrac{{{n^r} - n}}{{n - 1}} - \left( {r - 1} \right) \\
= \dfrac{{{n^r} - n - \left( {r - 1} \right)\left( {n - 1} \right)}}{{n - 1}} \\
= \dfrac{{{n^r} - n - nr + r + n - 1}}{{n - 1}} \\
= \dfrac{{{n^r} - nr + r - 1}}{{n - 1}} \\
$
Therefore the highest power of n in $ {n^r} - 1 $ is $ \dfrac{{{n^r} - nr + r - 1}}{{n - 1}} $
Hence, proved.
Note: An exponent is a number or letter written above and the right superscript of a mathematical expression called the base. It indicates that the base is to be raised to a certain power. The exponent corresponds to the number of times the base is used as a factor. Power denotes the repeated multiplication of a factor and the number which is raised to that base factor is the exponent. If $ {x^n} $ is a power then x is the base and n is the exponent. Do not confuse power with exponent.
Formula used: Legendre’s formula $ {h_p}\left( f \right) = \sum\limits_{i = 1}^\infty {\left\lfloor {\dfrac{f}{{{p^i}}}} \right\rfloor } $ where $ {h_p}\left( f \right) $ is the exponent of the largest power of n which uses the floor function, f is $ {n^r} - 1 $ which should be a positive integer and p is n and i vary from 1 to infinity.
Complete step-by-step answer:
We are given that to find the highest power of n in $ {n^r} - 1 $ and to prove the values is $ \dfrac{{{n^r} - nr + r - 1}}{{n - 1}} $
Using Legendre’s formula, we can find the exponent of the highest power of n contained in $ {n^r} - 1 $
$
{h_p}\left( f \right) = \sum\limits_{i = 1}^\infty {\left\lfloor {\dfrac{f}{{{p^i}}}} \right\rfloor } \\
p = n,f = {n^r} - 1 \\
{h_n}\left( {{n^r} - 1} \right) = \sum\limits_{i = 1}^\infty {\left\lfloor {\dfrac{{{n^r} - 1}}{{{n^i}}}} \right\rfloor } \\
= \left\lfloor {\dfrac{{{n^r} - 1}}{{{n^1}}}} \right\rfloor + \left\lfloor {\dfrac{{{n^r} - 1}}{{{n^2}}}} \right\rfloor + \left\lfloor {\dfrac{{{n^r} - 1}}{{{n^3}}}} \right\rfloor + ....... + \left\lfloor {\dfrac{{{n^r} - 1}}{{{n^r}}}} \right\rfloor \\
$
i must be from 1 to r, because when i value exceeds r, the exponent values of n will be less than 1.
So i is from 1 to r.
$
= \sum\limits_{k = 1}^r {\left\lfloor {\dfrac{{{n^r} - 1}}{{{n^k}}}} \right\rfloor } ,r \geqslant k \\
= \sum\limits_{k = 1}^r {\left\lfloor {\dfrac{{{n^r}}}{{{n^k}}} - \dfrac{1}{{{n^k}}}} \right\rfloor } \\
= \sum\limits_{k = 1}^r {\left\lfloor {{n^{r - k}} - \dfrac{1}{{{n^k}}}} \right\rfloor } \\
\left( {\because \dfrac{{{a^m}}}{{{a^n}}} = {a^{m - n}},m \geqslant n} \right) \\
= \sum\limits_{k = 1}^r {\left\lfloor {{n^{r - k}}} \right\rfloor } + \sum\limits_{k = 1}^r {\left\lfloor { - \dfrac{1}{{{n^k}}}} \right\rfloor } \\
= {n^{r - 1}} + {n^{r - 2}} + {n^{r - 3}} + ... + {n^{r - r}} - \dfrac{1}{{{n^1}}} - \dfrac{1}{{{n^2}}} - \dfrac{1}{{{n^3}}} - ... - \dfrac{1}{{{n^r}}} \\
= \dfrac{{{n^r} - n}}{{n - 1}} - \left( {r - 1} \right) \\
= \dfrac{{{n^r} - n - \left( {r - 1} \right)\left( {n - 1} \right)}}{{n - 1}} \\
= \dfrac{{{n^r} - n - nr + r + n - 1}}{{n - 1}} \\
= \dfrac{{{n^r} - nr + r - 1}}{{n - 1}} \\
$
Therefore the highest power of n in $ {n^r} - 1 $ is $ \dfrac{{{n^r} - nr + r - 1}}{{n - 1}} $
Hence, proved.
Note: An exponent is a number or letter written above and the right superscript of a mathematical expression called the base. It indicates that the base is to be raised to a certain power. The exponent corresponds to the number of times the base is used as a factor. Power denotes the repeated multiplication of a factor and the number which is raised to that base factor is the exponent. If $ {x^n} $ is a power then x is the base and n is the exponent. Do not confuse power with exponent.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Which Country is Called "The Land of Festivals"?

What type of cell is found in the Seminiferous tub class 10 biology CBSE

What are the public facilities provided by the government? Also explain each facility

