
Show that the following relation satisfies:
$\dfrac{\cos ec\left( 90-A \right)\times \sin \left( 180-A \right)\times \cot \left( 360-A \right)}{\sec \left( 180+A \right)\times \tan \left( 90+A \right)\times \sin \left( -A \right)}=1$
Answer
600.9k+ views
Hint:To solve the above question given above, we will separately calculate the value of each term that is in multiplication and division with other terms in terms of A only. Then we will convert all the other trigonometric functions into sin and cosec functions. Then we will put the values of all the terms in the left hand side of the question and solve it.
Complete step-by-step answer:
To find the value of the left hand side of the question, we will find the value of each form that is in multiplication and division with other terms. First we will find the value of cosec (90-A). We will convert the cosec into sin function. For this, we will use the identify shown below:
$\cos ec\theta =\dfrac{1}{\sin \theta }$
Thus, we will get: $\cos ec\left( 90-A \right)=\dfrac{1}{\sin \left( 90-A \right)}$
Now we will use the following identity in above equation
$\sin \left( 90-A \right)=\cos A$
Thus, we will get:
$\cos ec\left( 90-A \right)=\dfrac{1}{\cos A}............\left( 1 \right)$
Now we will convert $\sin \left( 180-A \right)$ to simple form with the help of identify:
$\sin \left( 180-\theta \right)=\sin \theta $
Thus, we will get:
$\sin \left( 180-A \right)=\operatorname{sinA}..........\left( 2 \right)$
Now we will convert the $\cot \left( 360-A \right)$ into simple form with the help of following identity:
$\cot \left( \theta \right)=\cot \left( \theta -360 \right)$
Thus, we will get
$\begin{align}
& \cot \left( 360-A \right)=\cot \left( 360-A-360 \right) \\
& \cot \left( 360-A \right)=\cot \left( -A \right) \\
\end{align}$
Now we will convert into lines and cosine terms with the help of following identity:
$\cot \theta =\dfrac{\cos \theta }{\sin \theta }$
Thus, we will get:
$\cot \left( 360-A \right)=\dfrac{\cos \left( -A \right)}{\sin \left( -A \right)}$
Now, cosine is even functions so $\cos \left( -\theta \right)=\cos \theta $ since is an odd function so $\text{ sin}\left( -\theta \right)=-\sin \theta $. Thus, we will get:
$\begin{align}
& \ \cos \left( 360-A \right)=\dfrac{\cos A}{-\sin A} \\
& \Rightarrow \cos \left( 360-A \right)=\dfrac{-\cos A}{\sin A}..........\left( 3 \right) \\
\end{align}$
Now, we will convert sec (180+A) into cosine terms with the help of following identity:
$\sec \theta =\dfrac{1}{\cos \theta }$
Therefore, we get:
$\sec \left( 180+A \right)=\dfrac{1}{\cos \left( 180+A \right)}$
Now, we will convert $\cos \left( 180+\theta \right)=-\cos \theta .$ So we will get:
$\sec \left( 180+A \right)=\dfrac{1}{-\cos A}..........\left( 4 \right)$
Now, we will convert tan (90+A) into sine and cosine forms. Thus, we will get:
$\tan \left( 90+A \right)=\dfrac{\sin \left( 90+A \right)}{\cos \left( 90+A \right)}$
Now, we know that, $\sin \left( 90+\theta \right)=\cos \theta \ \text{and cos}\left( 90+\theta \right)=-\sin \theta $ so we will have:
$\begin{align}
& \ \ \tan \left( 90+A \right)=\dfrac{\cos A}{-\sin A} \\
& \Rightarrow \tan \left( 90+A \right)=\dfrac{-\cos A}{\sin A}...........\left( 5 \right) \\
\end{align}$
Now, $\sin \left( -\theta \right)$ can also be written as$-\sin \theta .$ So, we will get:
$\sin \left( -A \right)=-\sin A..........\left( 6 \right)$
Now, we will put the values of $\left( 1 \right),\left( 2 \right),\left( 3 \right),\left( 4 \right),\left( 5 \right)\text{and}\left( 6 \right)$ into LHS of the equation. Thus, we will get:
$\begin{align}
& LHS=\dfrac{\left( \dfrac{1}{\cos A} \right)\left( \sin A \right)\left( \dfrac{-\cos A}{\sin A} \right)}{\left( \dfrac{-1}{\cos A} \right)\left( \dfrac{-\cos A}{\sin A} \right)\left( -\sin A \right)} \\
& \Rightarrow LHS=\dfrac{\left( -1 \right)}{\left( -1 \right)} \\
& \Rightarrow LHS=1 \\
& \Rightarrow LHS=RHS \\
\end{align}$
Hence proved.
Note: There is nothing given about the values of A in the question. This does not mean that we can have any value of A. At some value of A, the LHS is not defined. These values are $0,\dfrac{\pi }{2},\pi ,\dfrac{3\pi }{2},2\pi ........\text{etc}\text{.}$ Thus the value of A cannot be $\dfrac{n\pi }{2}$ because in this case LHS is not defined.
Complete step-by-step answer:
To find the value of the left hand side of the question, we will find the value of each form that is in multiplication and division with other terms. First we will find the value of cosec (90-A). We will convert the cosec into sin function. For this, we will use the identify shown below:
$\cos ec\theta =\dfrac{1}{\sin \theta }$
Thus, we will get: $\cos ec\left( 90-A \right)=\dfrac{1}{\sin \left( 90-A \right)}$
Now we will use the following identity in above equation
$\sin \left( 90-A \right)=\cos A$
Thus, we will get:
$\cos ec\left( 90-A \right)=\dfrac{1}{\cos A}............\left( 1 \right)$
Now we will convert $\sin \left( 180-A \right)$ to simple form with the help of identify:
$\sin \left( 180-\theta \right)=\sin \theta $
Thus, we will get:
$\sin \left( 180-A \right)=\operatorname{sinA}..........\left( 2 \right)$
Now we will convert the $\cot \left( 360-A \right)$ into simple form with the help of following identity:
$\cot \left( \theta \right)=\cot \left( \theta -360 \right)$
Thus, we will get
$\begin{align}
& \cot \left( 360-A \right)=\cot \left( 360-A-360 \right) \\
& \cot \left( 360-A \right)=\cot \left( -A \right) \\
\end{align}$
Now we will convert into lines and cosine terms with the help of following identity:
$\cot \theta =\dfrac{\cos \theta }{\sin \theta }$
Thus, we will get:
$\cot \left( 360-A \right)=\dfrac{\cos \left( -A \right)}{\sin \left( -A \right)}$
Now, cosine is even functions so $\cos \left( -\theta \right)=\cos \theta $ since is an odd function so $\text{ sin}\left( -\theta \right)=-\sin \theta $. Thus, we will get:
$\begin{align}
& \ \cos \left( 360-A \right)=\dfrac{\cos A}{-\sin A} \\
& \Rightarrow \cos \left( 360-A \right)=\dfrac{-\cos A}{\sin A}..........\left( 3 \right) \\
\end{align}$
Now, we will convert sec (180+A) into cosine terms with the help of following identity:
$\sec \theta =\dfrac{1}{\cos \theta }$
Therefore, we get:
$\sec \left( 180+A \right)=\dfrac{1}{\cos \left( 180+A \right)}$
Now, we will convert $\cos \left( 180+\theta \right)=-\cos \theta .$ So we will get:
$\sec \left( 180+A \right)=\dfrac{1}{-\cos A}..........\left( 4 \right)$
Now, we will convert tan (90+A) into sine and cosine forms. Thus, we will get:
$\tan \left( 90+A \right)=\dfrac{\sin \left( 90+A \right)}{\cos \left( 90+A \right)}$
Now, we know that, $\sin \left( 90+\theta \right)=\cos \theta \ \text{and cos}\left( 90+\theta \right)=-\sin \theta $ so we will have:
$\begin{align}
& \ \ \tan \left( 90+A \right)=\dfrac{\cos A}{-\sin A} \\
& \Rightarrow \tan \left( 90+A \right)=\dfrac{-\cos A}{\sin A}...........\left( 5 \right) \\
\end{align}$
Now, $\sin \left( -\theta \right)$ can also be written as$-\sin \theta .$ So, we will get:
$\sin \left( -A \right)=-\sin A..........\left( 6 \right)$
Now, we will put the values of $\left( 1 \right),\left( 2 \right),\left( 3 \right),\left( 4 \right),\left( 5 \right)\text{and}\left( 6 \right)$ into LHS of the equation. Thus, we will get:
$\begin{align}
& LHS=\dfrac{\left( \dfrac{1}{\cos A} \right)\left( \sin A \right)\left( \dfrac{-\cos A}{\sin A} \right)}{\left( \dfrac{-1}{\cos A} \right)\left( \dfrac{-\cos A}{\sin A} \right)\left( -\sin A \right)} \\
& \Rightarrow LHS=\dfrac{\left( -1 \right)}{\left( -1 \right)} \\
& \Rightarrow LHS=1 \\
& \Rightarrow LHS=RHS \\
\end{align}$
Hence proved.
Note: There is nothing given about the values of A in the question. This does not mean that we can have any value of A. At some value of A, the LHS is not defined. These values are $0,\dfrac{\pi }{2},\pi ,\dfrac{3\pi }{2},2\pi ........\text{etc}\text{.}$ Thus the value of A cannot be $\dfrac{n\pi }{2}$ because in this case LHS is not defined.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

