Answer
Verified
456.6k+ views
Hint: Co-prime number are the number which have highest common factors ( HCF ) equals to $1$ so for this as the factor of $59 = 1 \times 59$ because $59$ is prime number and $97 = 1 \times 97$ because $97$ is prime number.
Complete step-by-step answer:
A Co-prime number is a set of the numbers or integers which have only $1$ as their common factor that is their highest common factor (HCF) will be $1$ .
Means that if both the numbers is divisible by $1$ only not any other number can divide it without leaving reminder ,
So we have to show that the following pairs are co-prime $59,97$
By prime factorization method ,
$59$ can be written as $59 = 1 \times 59$ because $59$ is prime number .
now
$97$ can be written as $97 = 1 \times 97$ because $97$ is prime number .
So from the prime factorization method only $1$ is the common factor or HCF of both numbers is $1$
Hence the given pair 59 and 97 are co-prime numbers.
Note: As from above the pairs of prime numbers are always coprime but it is not necessary that a pair of co-prime numbers is prime number for example $7,15$ .
so $7 = 1 \times 7$ it is a prime number and for $15 = 1 \times 3 \times 5$ so only $1$ is the common factor or HCF of both numbers is $1$
Hence it is a co-prime number but both numbers are not prime .
$1$ is co-prime with every number.
Complete step-by-step answer:
A Co-prime number is a set of the numbers or integers which have only $1$ as their common factor that is their highest common factor (HCF) will be $1$ .
Means that if both the numbers is divisible by $1$ only not any other number can divide it without leaving reminder ,
So we have to show that the following pairs are co-prime $59,97$
By prime factorization method ,
$59$ can be written as $59 = 1 \times 59$ because $59$ is prime number .
now
$97$ can be written as $97 = 1 \times 97$ because $97$ is prime number .
So from the prime factorization method only $1$ is the common factor or HCF of both numbers is $1$
Hence the given pair 59 and 97 are co-prime numbers.
Note: As from above the pairs of prime numbers are always coprime but it is not necessary that a pair of co-prime numbers is prime number for example $7,15$ .
so $7 = 1 \times 7$ it is a prime number and for $15 = 1 \times 3 \times 5$ so only $1$ is the common factor or HCF of both numbers is $1$
Hence it is a co-prime number but both numbers are not prime .
$1$ is co-prime with every number.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
10 examples of friction in our daily life
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
What is pollution? How many types of pollution? Define it