
Show that the determinant \[\left| \begin{matrix}
a+b+2c & a & b \\
c & b+c+2a & b \\
c & a & a+c+2b \\
\end{matrix} \right|=2{{\left( a+b+c \right)}^{3}}\].
Answer
509.7k+ views
Hint:In this question, in order to find the determinant of the given matrix. We will first use the property of the determinant of a matrix that performing any row or column operation in the given matrix will not change the determinant of the matrix. Thus we will use a column operation where \[{{C}_{1}}\to {{C}_{1}}+{{C}_{2}}+{{C}_{3}}\]. We will then get a matrix with elements of the first column that are all equal to \[2\left( a+b+c \right)\]. Then using the property of determinant of a matrix \[A\] that if in any row or a column all the elements are equal, say \[x\] . Then we can take the value \[x\] out of the determinant of the matrix \[A\]leaving the entries of that row or column equal to 1. Using this will take the common factor \[2\left( a+b+c \right)\] from the first column of the resultant determinant leaving all the entries of the first column equal to 1. Then we will perform two row operations \[{{R}_{1}}\to {{R}_{1}}-{{R}_{3}}\] and \[{{R}_{2}}\to {{R}_{2}}-{{R}_{3}}\] and then evaluate the determinant in order to get the desired result.
Complete step by step answer:
Let us suppose that the matrix \[A=\left[ \begin{matrix}
a+b+2c & a & b \\
c & b+c+2a & b \\
c & a & a+c+2b \\
\end{matrix} \right]\].
We have to evaluate the determinant of the matrix \[A\].
Now we will be using the property of the determinant of a matrix that performing any row or column operation in the given matrix will not change the determinant of the matrix.
We also have \[\left| A \right|=\left| \begin{matrix}
a+b+2c & a & b \\
c & b+c+2a & b \\
c & a & a+c+2b \\
\end{matrix} \right|\].
Now we will use the column operation \[{{C}_{1}}\to {{C}_{1}}+{{C}_{2}}+{{C}_{3}}\] in matrix \[A\] and we know that the determinant of the matrix will not change.
Thus we have
\[\left| A \right|=\left| \begin{matrix}
2a+2b+2c & a & b \\
2a+2b+2c & b+c+2a & b \\
2a+2b+2c & a & a+c+2b \\
\end{matrix} \right|\]
We now have that elements of the first column are all equal to \[2\left( a+b+c \right)\].
Then using the property of determinant of a matrix \[A\] that if in any row or a column all the elements are equal, say \[x\] . Then we can take the value \[x\] out of the determinant of the matrix \[A\]leaving the entries of that row or column equal to 1.
Using this will take the common factor \[2\left( a+b+c \right)\] from the first column of the resultant determinant leaving all the entries of the first column equal to 1.
Then we have
\[\begin{align}
& \left| A \right|=\left( 2a+2b+2c \right)\left| \begin{matrix}
1 & a & b \\
1 & b+c+2a & b \\
1 & a & a+c+2b \\
\end{matrix} \right| \\
& =2\left( a+b+c \right)\left| \begin{matrix}
1 & a & b \\
1 & b+c+2a & b \\
1 & a & a+c+2b \\
\end{matrix} \right|
\end{align}\]
Now we will use the row operation \[{{R}_{1}}\to {{R}_{1}}-{{R}_{3}}\] in the above determinant.
Then we get
\[\left| A \right|=2\left( a+b+c \right)\left| \begin{matrix}
0 & 0 & -a-b-c \\
1 & b+c+2a & b \\
1 & a & a+c+2b \\
\end{matrix} \right|\]
Again we will use the row operation \[{{R}_{2}}\to {{R}_{2}}-{{R}_{3}}\] in the above determinant.
We now have
\[\left| A \right|=2\left( a+b+c \right)\left| \begin{matrix}
0 & 0 & -a-b-c \\
0 & b+c+a & -a-b-c \\
1 & a & a+c+2b \\
\end{matrix} \right|\]
Now on evaluating the above determinant we get
\[\begin{align}
& \left| A \right|=2\left( a+b+c \right)\left( 0-0+1\left( 0+{{\left( a+b+c \right)}^{2}} \right) \right) \\
& =2\left( a+b+c \right){{\left( a+b+c \right)}^{2}} \\
& =2{{\left( a+b+c \right)}^{3}}
\end{align}\]
Thus we have shown that
\[\left| \begin{matrix}
a+b+2c & a & b \\
c & b+c+2a & b \\
c & a & a+c+2b \\
\end{matrix} \right|=2{{\left( a+b+c \right)}^{3}}\].
Note:
In this problem, please do not evaluate the determinant of the given matrix directly using the definition of determinants otherwise it will be difficult to get the desired answer. Instead we can use properties of determinants of matrices in order to simplify the problem.
Complete step by step answer:
Let us suppose that the matrix \[A=\left[ \begin{matrix}
a+b+2c & a & b \\
c & b+c+2a & b \\
c & a & a+c+2b \\
\end{matrix} \right]\].
We have to evaluate the determinant of the matrix \[A\].
Now we will be using the property of the determinant of a matrix that performing any row or column operation in the given matrix will not change the determinant of the matrix.
We also have \[\left| A \right|=\left| \begin{matrix}
a+b+2c & a & b \\
c & b+c+2a & b \\
c & a & a+c+2b \\
\end{matrix} \right|\].
Now we will use the column operation \[{{C}_{1}}\to {{C}_{1}}+{{C}_{2}}+{{C}_{3}}\] in matrix \[A\] and we know that the determinant of the matrix will not change.
Thus we have
\[\left| A \right|=\left| \begin{matrix}
2a+2b+2c & a & b \\
2a+2b+2c & b+c+2a & b \\
2a+2b+2c & a & a+c+2b \\
\end{matrix} \right|\]
We now have that elements of the first column are all equal to \[2\left( a+b+c \right)\].
Then using the property of determinant of a matrix \[A\] that if in any row or a column all the elements are equal, say \[x\] . Then we can take the value \[x\] out of the determinant of the matrix \[A\]leaving the entries of that row or column equal to 1.
Using this will take the common factor \[2\left( a+b+c \right)\] from the first column of the resultant determinant leaving all the entries of the first column equal to 1.
Then we have
\[\begin{align}
& \left| A \right|=\left( 2a+2b+2c \right)\left| \begin{matrix}
1 & a & b \\
1 & b+c+2a & b \\
1 & a & a+c+2b \\
\end{matrix} \right| \\
& =2\left( a+b+c \right)\left| \begin{matrix}
1 & a & b \\
1 & b+c+2a & b \\
1 & a & a+c+2b \\
\end{matrix} \right|
\end{align}\]
Now we will use the row operation \[{{R}_{1}}\to {{R}_{1}}-{{R}_{3}}\] in the above determinant.
Then we get
\[\left| A \right|=2\left( a+b+c \right)\left| \begin{matrix}
0 & 0 & -a-b-c \\
1 & b+c+2a & b \\
1 & a & a+c+2b \\
\end{matrix} \right|\]
Again we will use the row operation \[{{R}_{2}}\to {{R}_{2}}-{{R}_{3}}\] in the above determinant.
We now have
\[\left| A \right|=2\left( a+b+c \right)\left| \begin{matrix}
0 & 0 & -a-b-c \\
0 & b+c+a & -a-b-c \\
1 & a & a+c+2b \\
\end{matrix} \right|\]
Now on evaluating the above determinant we get
\[\begin{align}
& \left| A \right|=2\left( a+b+c \right)\left( 0-0+1\left( 0+{{\left( a+b+c \right)}^{2}} \right) \right) \\
& =2\left( a+b+c \right){{\left( a+b+c \right)}^{2}} \\
& =2{{\left( a+b+c \right)}^{3}}
\end{align}\]
Thus we have shown that
\[\left| \begin{matrix}
a+b+2c & a & b \\
c & b+c+2a & b \\
c & a & a+c+2b \\
\end{matrix} \right|=2{{\left( a+b+c \right)}^{3}}\].
Note:
In this problem, please do not evaluate the determinant of the given matrix directly using the definition of determinants otherwise it will be difficult to get the desired answer. Instead we can use properties of determinants of matrices in order to simplify the problem.
Recently Updated Pages
Earth rotates from West to east ATrue BFalse class 6 social science CBSE

The easternmost longitude of India is A 97circ 25E class 6 social science CBSE

Write the given sentence in the passive voice Ann cant class 6 CBSE

Convert 1 foot into meters A030 meter B03048 meter-class-6-maths-CBSE

What is the LCM of 30 and 40 class 6 maths CBSE

What is history A The science that tries to understand class 6 social science CBSE

Trending doubts
Father of Indian ecology is a Prof R Misra b GS Puri class 12 biology CBSE

Who is considered as the Father of Ecology in India class 12 biology CBSE

Enzymes with heme as prosthetic group are a Catalase class 12 biology CBSE

A deep narrow valley with steep sides formed as a result class 12 biology CBSE

An example of ex situ conservation is a Sacred grove class 12 biology CBSE

Why is insulin not administered orally to a diabetic class 12 biology CBSE
