
Show that the coefficient of ${{x}^{n}}$ in the expansion of $\dfrac{x}{{{\left( 1-x \right)}^{2}}-cx}$ is $n\left\{ 1+\dfrac{{{n}^{2}}-1}{\left| \!{\underline {\,
3 \,}} \right. }c+\dfrac{\left( {{n}^{2}}-1 \right)\left( {{n}^{2}}-4 \right)}{\left| \!{\underline {\,
5 \,}} \right. }{{c}^{2}}+\dfrac{\left( {{n}^{2}}-1 \right)\left( {{n}^{2}}-4 \right)\left( {{n}^{2}}-9 \right)}{\left| \!{\underline {\,
7 \,}} \right. }{{c}^{3}}+........ \right\}$
Answer
468.9k+ views
Hint: We can solve this question by using some of basic formula of infinite GP that is
$\dfrac{1}{1-x}=1+x+{{x}^{2}}+{{x}^{3}}+......$ where $-1\le x\le 1$ and another series ${{\left( 1-x \right)}^{-n}}=1+nx+\dfrac{n\left( n+1 \right)}{\left| \!{\underline {\,
2 \,}} \right. }{{x}^{2}}+\dfrac{n\left( n+1 \right)\left( n+2 \right)}{\left| \!{\underline {\,
3 \,}} \right. }......$ where $-1\le x\le 1$ we can write
${{\left( 1-x \right)}^{-n}}=1+\sum\limits_{r=0}^{\infty }{(n+r){{C}_{r+1}}}{{x}^{r+1}}$ . Coefficient of ${{x}^{r}}$ in ${{\left( 1-x \right)}^{-n}}$ is $\left( n+r-1 \right){{C}_{r}}$ .
Complete step by step answer:
The coefficient of ${{x}^{n}}$ in the series $\dfrac{x}{{{\left( 1-x \right)}^{2}}-cx}$ is equal to coefficient of ${{x}^{n-1}}$ in the series $\dfrac{1}{{{\left( 1-x \right)}^{2}}-cx}$
Taking $\left( 1-{{x}^{2}} \right)$ common in the denominator we get
$\Rightarrow \dfrac{1}{{{\left( 1-x \right)}^{2}}-cx}=\dfrac{1}{{{\left( 1-x \right)}^{2}}}\left[ \dfrac{1}{1-\dfrac{cx}{{{\left( 1-x \right)}^{2}}}} \right]$
Let’ expand the term $\dfrac{1}{1-\left( \dfrac{cx}{{{\left( 1-x \right)}^{2}}} \right)}$
We can assume the $\dfrac{cx}{{{\left( 1-x \right)}^{2}}}$ as y then it will be $\dfrac{1}{1-y}$ then we can expand the term.
$\dfrac{1}{1-\left( \dfrac{cx}{{{\left( 1-x \right)}^{2}}} \right)}=1+\dfrac{cx}{{{\left( 1-x \right)}^{2}}}+{{\left( \dfrac{cx}{{{\left( 1-x \right)}^{2}}} \right)}^{2}}+{{\left( \dfrac{cx}{{{\left( 1-x \right)}^{2}}} \right)}^{3}}+......$ $-1\le \dfrac{cx}{{{\left( 1-x \right)}^{2}}}\le 1$
$\Rightarrow \dfrac{1}{1-\left( \dfrac{cx}{{{\left( 1-x \right)}^{2}}} \right)}=1+\dfrac{cx}{{{\left( 1-x \right)}^{2}}}+\dfrac{{{c}^{2}}{{x}^{2}}}{{{\left( 1-x \right)}^{4}}}+\dfrac{{{c}^{3}}{{x}^{3}}}{{{\left( 1-x \right)}^{6}}}+.....$ $-1\le \dfrac{cx}{{{\left( 1-x \right)}^{2}}}\le 1$
Now we can write
$\dfrac{1}{{{\left( 1-x \right)}^{2}}-cx}=\dfrac{1}{{{\left( 1-x \right)}^{2}}}\left( 1+\dfrac{cx}{{{\left( 1-x \right)}^{2}}}+\dfrac{{{c}^{2}}{{x}^{2}}}{{{\left( 1-x \right)}^{4}}}+\dfrac{{{c}^{3}}{{x}^{3}}}{{{\left( 1-x \right)}^{6}}}+..... \right)$
$\dfrac{1}{{{\left( 1-x \right)}^{2}}-cx}=\left( \dfrac{1}{{{\left( 1-x \right)}^{2}}}+\dfrac{cx}{{{\left( 1-x \right)}^{4}}}+\dfrac{{{c}^{2}}{{x}^{2}}}{{{\left( 1-x \right)}^{6}}}+\dfrac{{{c}^{3}}{{x}^{3}}}{{{\left( 1-x \right)}^{8}}}+..... \right)$
So the coefficient of ${{x}^{n-1}}$ in $\dfrac{1}{{{\left( 1-x \right)}^{2}}-cx}$ is equal to coefficient of ${{x}^{n-1}}$ in $\left( \dfrac{1}{{{\left( 1-x \right)}^{2}}}+\dfrac{cx}{{{\left( 1-x \right)}^{4}}}+\dfrac{{{c}^{2}}{{x}^{2}}}{{{\left( 1-x \right)}^{6}}}+\dfrac{{{c}^{3}}{{x}^{3}}}{{{\left( 1-x \right)}^{8}}}+..... \right)$ = coefficient of ${{x}^{n-1}}$ in $\sum\limits_{r=0}^{\infty }{\dfrac{{{c}^{r}}{{x}^{r}}}{{{\left( 1-x \right)}^{2r+2}}}}$
=coefficient of ${{x}^{n-1-r}}$ in $\sum\limits_{r=0}^{\infty }{\dfrac{{{c}^{r}}}{{{\left( 1-x \right)}^{2r+2}}}}$
We know that coefficient of ${{x}^{p}}$ in ${{\left( 1-x \right)}^{-m}}$ is $\left( m+p-1 \right){{C}_{p}}$ or $\left( m+p-1 \right){{C}_{m-1}}$
Here p is $n-1-r$ and m is $2r+2$
Coefficient of ${{x}^{n-1-r}}$ in $\sum\limits_{r=0}^{\infty }{\dfrac{{{c}^{r}}}{{{\left( 1-x \right)}^{2r+2}}}}$=$\sum\limits_{r=0}^{\infty }{{}}$ (coefficient of ${{x}^{n-1-r}}$ in $\dfrac{{{c}^{r}}}{{{\left( 1-x \right)}^{2r+2}}}$ )
$\Rightarrow $ Coefficient of ${{x}^{n-1-r}}$ in $\sum\limits_{r=0}^{\infty }{\dfrac{{{c}^{r}}}{{{\left( 1-x \right)}^{2r+2}}}}$ = $\sum\limits_{r=0}^{\infty }{{}}$${{c}^{r}}\times \left( n-1-r+2r+2-1 \right){{C}_{2r+2-1}}$
$\Rightarrow $ Coefficient of ${{x}^{n-1-r}}$ in $\sum\limits_{r=0}^{\infty }{\dfrac{{{c}^{r}}}{{{\left( 1-x \right)}^{2r+2}}}}$ = $\sum\limits_{r=0}^{\infty }{\left( n+r \right){{C}_{2r+1}}\times {{c}^{r}}}$
$\Rightarrow \sum\limits_{r=0}^{\infty }{\left( n+r \right){{C}_{2r+1}}\times {{c}^{r}}}=\sum\limits_{r=0}^{\infty }{\dfrac{\left( n+r \right)\times \left( n+r-1 \right)\times .........\left( n-(r-1) \right)\times \left( n-r \right)\times {{c}^{r}}}{2}}$
We can see there is $\left( n+r \right)\times \left( n-r \right)$ , $\left( n+r-1 \right)\times \left( n-(r-1) \right)$ ,……..till $\left( n+1 \right)\times \left( n-1 \right)$ and n is left out. We know that $\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}}$ so taking n common and multiply these terms we get
$\Rightarrow \sum\limits_{r=0}^{\infty }{\dfrac{\left( n+r \right)\times \left( n+r-1 \right)\times .........\left( n-(r-1) \right)\times \left( n-r \right){{c}^{r}}}{\left| \!{\underline {\,
2r+1 \,}} \right. }}=n\times \sum\limits_{r=0}^{\infty }{\dfrac{\left( {{n}^{2}}-{{r}^{2}} \right)\left( {{n}^{2}}-{{(r-1)}^{2}} \right).........\left( {{n}^{2}}-{{2}^{2}} \right)\left( {{n}^{2}}-{{1}^{2}} \right){{c}^{r}}}{\left| \!{\underline {\,
2r+1 \,}} \right. }}$
So expanding the term we get $n\left\{ 1+\dfrac{{{n}^{2}}-1}{\left| \!{\underline {\,
3 \,}} \right. }c+\dfrac{\left( {{n}^{2}}-1 \right)\left( {{n}^{2}}-4 \right)}{\left| \!{\underline {\,
5 \,}} \right. }{{c}^{2}}+\dfrac{\left( {{n}^{2}}-1 \right)\left( {{n}^{2}}-4 \right)\left( {{n}^{2}}-9 \right)}{\left| \!{\underline {\,
7 \,}} \right. }{{c}^{3}}+........ \right\}$.
Now we can see from the above proof that the coefficient of
${{x}^{n}}$ in the expansion of $\dfrac{x}{{{\left( 1-x \right)}^{2}}-cx}$ is $n\left\{ 1+\dfrac{{{n}^{2}}-1}{\left| \!{\underline {\,
3 \,}} \right. }c+\dfrac{\left( {{n}^{2}}-1 \right)\left( {{n}^{2}}-4 \right)}{\left| \!{\underline {\,
5 \,}} \right. }{{c}^{2}}+\dfrac{\left( {{n}^{2}}-1 \right)\left( {{n}^{2}}-4 \right)\left( {{n}^{2}}-9 \right)}{\left| \!{\underline {\,
7 \,}} \right. }{{c}^{3}}+........ \right\}$
Keep in mind that all the expansion of series is valid when
$-1\le x\le 1$
$-1\le \dfrac{cx}{{{\left( 1-x \right)}^{2}}}\le 1$
Note: Always keep in mind that coefficient of ${{x}^{n}}$ in in a series which is in the form ${{x}^{r}}\times S$ where S is a series will be equal to coefficient of ${{x}^{n-r}}$ in S. we have seen this in the above question. Some infinite series will be valid only in a specific range of x. So try to mention the range while solving.
$\dfrac{1}{1-x}=1+x+{{x}^{2}}+{{x}^{3}}+......$ where $-1\le x\le 1$ and another series ${{\left( 1-x \right)}^{-n}}=1+nx+\dfrac{n\left( n+1 \right)}{\left| \!{\underline {\,
2 \,}} \right. }{{x}^{2}}+\dfrac{n\left( n+1 \right)\left( n+2 \right)}{\left| \!{\underline {\,
3 \,}} \right. }......$ where $-1\le x\le 1$ we can write
${{\left( 1-x \right)}^{-n}}=1+\sum\limits_{r=0}^{\infty }{(n+r){{C}_{r+1}}}{{x}^{r+1}}$ . Coefficient of ${{x}^{r}}$ in ${{\left( 1-x \right)}^{-n}}$ is $\left( n+r-1 \right){{C}_{r}}$ .
Complete step by step answer:
The coefficient of ${{x}^{n}}$ in the series $\dfrac{x}{{{\left( 1-x \right)}^{2}}-cx}$ is equal to coefficient of ${{x}^{n-1}}$ in the series $\dfrac{1}{{{\left( 1-x \right)}^{2}}-cx}$
Taking $\left( 1-{{x}^{2}} \right)$ common in the denominator we get
$\Rightarrow \dfrac{1}{{{\left( 1-x \right)}^{2}}-cx}=\dfrac{1}{{{\left( 1-x \right)}^{2}}}\left[ \dfrac{1}{1-\dfrac{cx}{{{\left( 1-x \right)}^{2}}}} \right]$
Let’ expand the term $\dfrac{1}{1-\left( \dfrac{cx}{{{\left( 1-x \right)}^{2}}} \right)}$
We can assume the $\dfrac{cx}{{{\left( 1-x \right)}^{2}}}$ as y then it will be $\dfrac{1}{1-y}$ then we can expand the term.
$\dfrac{1}{1-\left( \dfrac{cx}{{{\left( 1-x \right)}^{2}}} \right)}=1+\dfrac{cx}{{{\left( 1-x \right)}^{2}}}+{{\left( \dfrac{cx}{{{\left( 1-x \right)}^{2}}} \right)}^{2}}+{{\left( \dfrac{cx}{{{\left( 1-x \right)}^{2}}} \right)}^{3}}+......$ $-1\le \dfrac{cx}{{{\left( 1-x \right)}^{2}}}\le 1$
$\Rightarrow \dfrac{1}{1-\left( \dfrac{cx}{{{\left( 1-x \right)}^{2}}} \right)}=1+\dfrac{cx}{{{\left( 1-x \right)}^{2}}}+\dfrac{{{c}^{2}}{{x}^{2}}}{{{\left( 1-x \right)}^{4}}}+\dfrac{{{c}^{3}}{{x}^{3}}}{{{\left( 1-x \right)}^{6}}}+.....$ $-1\le \dfrac{cx}{{{\left( 1-x \right)}^{2}}}\le 1$
Now we can write
$\dfrac{1}{{{\left( 1-x \right)}^{2}}-cx}=\dfrac{1}{{{\left( 1-x \right)}^{2}}}\left( 1+\dfrac{cx}{{{\left( 1-x \right)}^{2}}}+\dfrac{{{c}^{2}}{{x}^{2}}}{{{\left( 1-x \right)}^{4}}}+\dfrac{{{c}^{3}}{{x}^{3}}}{{{\left( 1-x \right)}^{6}}}+..... \right)$
$\dfrac{1}{{{\left( 1-x \right)}^{2}}-cx}=\left( \dfrac{1}{{{\left( 1-x \right)}^{2}}}+\dfrac{cx}{{{\left( 1-x \right)}^{4}}}+\dfrac{{{c}^{2}}{{x}^{2}}}{{{\left( 1-x \right)}^{6}}}+\dfrac{{{c}^{3}}{{x}^{3}}}{{{\left( 1-x \right)}^{8}}}+..... \right)$
So the coefficient of ${{x}^{n-1}}$ in $\dfrac{1}{{{\left( 1-x \right)}^{2}}-cx}$ is equal to coefficient of ${{x}^{n-1}}$ in $\left( \dfrac{1}{{{\left( 1-x \right)}^{2}}}+\dfrac{cx}{{{\left( 1-x \right)}^{4}}}+\dfrac{{{c}^{2}}{{x}^{2}}}{{{\left( 1-x \right)}^{6}}}+\dfrac{{{c}^{3}}{{x}^{3}}}{{{\left( 1-x \right)}^{8}}}+..... \right)$ = coefficient of ${{x}^{n-1}}$ in $\sum\limits_{r=0}^{\infty }{\dfrac{{{c}^{r}}{{x}^{r}}}{{{\left( 1-x \right)}^{2r+2}}}}$
=coefficient of ${{x}^{n-1-r}}$ in $\sum\limits_{r=0}^{\infty }{\dfrac{{{c}^{r}}}{{{\left( 1-x \right)}^{2r+2}}}}$
We know that coefficient of ${{x}^{p}}$ in ${{\left( 1-x \right)}^{-m}}$ is $\left( m+p-1 \right){{C}_{p}}$ or $\left( m+p-1 \right){{C}_{m-1}}$
Here p is $n-1-r$ and m is $2r+2$
Coefficient of ${{x}^{n-1-r}}$ in $\sum\limits_{r=0}^{\infty }{\dfrac{{{c}^{r}}}{{{\left( 1-x \right)}^{2r+2}}}}$=$\sum\limits_{r=0}^{\infty }{{}}$ (coefficient of ${{x}^{n-1-r}}$ in $\dfrac{{{c}^{r}}}{{{\left( 1-x \right)}^{2r+2}}}$ )
$\Rightarrow $ Coefficient of ${{x}^{n-1-r}}$ in $\sum\limits_{r=0}^{\infty }{\dfrac{{{c}^{r}}}{{{\left( 1-x \right)}^{2r+2}}}}$ = $\sum\limits_{r=0}^{\infty }{{}}$${{c}^{r}}\times \left( n-1-r+2r+2-1 \right){{C}_{2r+2-1}}$
$\Rightarrow $ Coefficient of ${{x}^{n-1-r}}$ in $\sum\limits_{r=0}^{\infty }{\dfrac{{{c}^{r}}}{{{\left( 1-x \right)}^{2r+2}}}}$ = $\sum\limits_{r=0}^{\infty }{\left( n+r \right){{C}_{2r+1}}\times {{c}^{r}}}$
$\Rightarrow \sum\limits_{r=0}^{\infty }{\left( n+r \right){{C}_{2r+1}}\times {{c}^{r}}}=\sum\limits_{r=0}^{\infty }{\dfrac{\left( n+r \right)\times \left( n+r-1 \right)\times .........\left( n-(r-1) \right)\times \left( n-r \right)\times {{c}^{r}}}{2}}$
We can see there is $\left( n+r \right)\times \left( n-r \right)$ , $\left( n+r-1 \right)\times \left( n-(r-1) \right)$ ,……..till $\left( n+1 \right)\times \left( n-1 \right)$ and n is left out. We know that $\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}}$ so taking n common and multiply these terms we get
$\Rightarrow \sum\limits_{r=0}^{\infty }{\dfrac{\left( n+r \right)\times \left( n+r-1 \right)\times .........\left( n-(r-1) \right)\times \left( n-r \right){{c}^{r}}}{\left| \!{\underline {\,
2r+1 \,}} \right. }}=n\times \sum\limits_{r=0}^{\infty }{\dfrac{\left( {{n}^{2}}-{{r}^{2}} \right)\left( {{n}^{2}}-{{(r-1)}^{2}} \right).........\left( {{n}^{2}}-{{2}^{2}} \right)\left( {{n}^{2}}-{{1}^{2}} \right){{c}^{r}}}{\left| \!{\underline {\,
2r+1 \,}} \right. }}$
So expanding the term we get $n\left\{ 1+\dfrac{{{n}^{2}}-1}{\left| \!{\underline {\,
3 \,}} \right. }c+\dfrac{\left( {{n}^{2}}-1 \right)\left( {{n}^{2}}-4 \right)}{\left| \!{\underline {\,
5 \,}} \right. }{{c}^{2}}+\dfrac{\left( {{n}^{2}}-1 \right)\left( {{n}^{2}}-4 \right)\left( {{n}^{2}}-9 \right)}{\left| \!{\underline {\,
7 \,}} \right. }{{c}^{3}}+........ \right\}$.
Now we can see from the above proof that the coefficient of
${{x}^{n}}$ in the expansion of $\dfrac{x}{{{\left( 1-x \right)}^{2}}-cx}$ is $n\left\{ 1+\dfrac{{{n}^{2}}-1}{\left| \!{\underline {\,
3 \,}} \right. }c+\dfrac{\left( {{n}^{2}}-1 \right)\left( {{n}^{2}}-4 \right)}{\left| \!{\underline {\,
5 \,}} \right. }{{c}^{2}}+\dfrac{\left( {{n}^{2}}-1 \right)\left( {{n}^{2}}-4 \right)\left( {{n}^{2}}-9 \right)}{\left| \!{\underline {\,
7 \,}} \right. }{{c}^{3}}+........ \right\}$
Keep in mind that all the expansion of series is valid when
$-1\le x\le 1$
$-1\le \dfrac{cx}{{{\left( 1-x \right)}^{2}}}\le 1$
Note: Always keep in mind that coefficient of ${{x}^{n}}$ in in a series which is in the form ${{x}^{r}}\times S$ where S is a series will be equal to coefficient of ${{x}^{n-r}}$ in S. we have seen this in the above question. Some infinite series will be valid only in a specific range of x. So try to mention the range while solving.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Trending doubts
State and prove Bernoullis theorem class 11 physics CBSE

Raindrops are spherical because of A Gravitational class 11 physics CBSE

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

Write the differences between monocot plants and dicot class 11 biology CBSE

Why is steel more elastic than rubber class 11 physics CBSE

Explain why a There is no atmosphere on the moon b class 11 physics CBSE
