
Show that the coefficient of ${{x}^{n}}$ in the expansion of $\dfrac{x}{{{\left( 1-x \right)}^{2}}-cx}$ is $n\left\{ 1+\dfrac{{{n}^{2}}-1}{\left| \!{\underline {\,
3 \,}} \right. }c+\dfrac{\left( {{n}^{2}}-1 \right)\left( {{n}^{2}}-4 \right)}{\left| \!{\underline {\,
5 \,}} \right. }{{c}^{2}}+\dfrac{\left( {{n}^{2}}-1 \right)\left( {{n}^{2}}-4 \right)\left( {{n}^{2}}-9 \right)}{\left| \!{\underline {\,
7 \,}} \right. }{{c}^{3}}+........ \right\}$
Answer
549.3k+ views
Hint: We can solve this question by using some of basic formula of infinite GP that is
$\dfrac{1}{1-x}=1+x+{{x}^{2}}+{{x}^{3}}+......$ where $-1\le x\le 1$ and another series ${{\left( 1-x \right)}^{-n}}=1+nx+\dfrac{n\left( n+1 \right)}{\left| \!{\underline {\,
2 \,}} \right. }{{x}^{2}}+\dfrac{n\left( n+1 \right)\left( n+2 \right)}{\left| \!{\underline {\,
3 \,}} \right. }......$ where $-1\le x\le 1$ we can write
${{\left( 1-x \right)}^{-n}}=1+\sum\limits_{r=0}^{\infty }{(n+r){{C}_{r+1}}}{{x}^{r+1}}$ . Coefficient of ${{x}^{r}}$ in ${{\left( 1-x \right)}^{-n}}$ is $\left( n+r-1 \right){{C}_{r}}$ .
Complete step by step answer:
The coefficient of ${{x}^{n}}$ in the series $\dfrac{x}{{{\left( 1-x \right)}^{2}}-cx}$ is equal to coefficient of ${{x}^{n-1}}$ in the series $\dfrac{1}{{{\left( 1-x \right)}^{2}}-cx}$
Taking $\left( 1-{{x}^{2}} \right)$ common in the denominator we get
$\Rightarrow \dfrac{1}{{{\left( 1-x \right)}^{2}}-cx}=\dfrac{1}{{{\left( 1-x \right)}^{2}}}\left[ \dfrac{1}{1-\dfrac{cx}{{{\left( 1-x \right)}^{2}}}} \right]$
Let’ expand the term $\dfrac{1}{1-\left( \dfrac{cx}{{{\left( 1-x \right)}^{2}}} \right)}$
We can assume the $\dfrac{cx}{{{\left( 1-x \right)}^{2}}}$ as y then it will be $\dfrac{1}{1-y}$ then we can expand the term.
$\dfrac{1}{1-\left( \dfrac{cx}{{{\left( 1-x \right)}^{2}}} \right)}=1+\dfrac{cx}{{{\left( 1-x \right)}^{2}}}+{{\left( \dfrac{cx}{{{\left( 1-x \right)}^{2}}} \right)}^{2}}+{{\left( \dfrac{cx}{{{\left( 1-x \right)}^{2}}} \right)}^{3}}+......$ $-1\le \dfrac{cx}{{{\left( 1-x \right)}^{2}}}\le 1$
$\Rightarrow \dfrac{1}{1-\left( \dfrac{cx}{{{\left( 1-x \right)}^{2}}} \right)}=1+\dfrac{cx}{{{\left( 1-x \right)}^{2}}}+\dfrac{{{c}^{2}}{{x}^{2}}}{{{\left( 1-x \right)}^{4}}}+\dfrac{{{c}^{3}}{{x}^{3}}}{{{\left( 1-x \right)}^{6}}}+.....$ $-1\le \dfrac{cx}{{{\left( 1-x \right)}^{2}}}\le 1$
Now we can write
$\dfrac{1}{{{\left( 1-x \right)}^{2}}-cx}=\dfrac{1}{{{\left( 1-x \right)}^{2}}}\left( 1+\dfrac{cx}{{{\left( 1-x \right)}^{2}}}+\dfrac{{{c}^{2}}{{x}^{2}}}{{{\left( 1-x \right)}^{4}}}+\dfrac{{{c}^{3}}{{x}^{3}}}{{{\left( 1-x \right)}^{6}}}+..... \right)$
$\dfrac{1}{{{\left( 1-x \right)}^{2}}-cx}=\left( \dfrac{1}{{{\left( 1-x \right)}^{2}}}+\dfrac{cx}{{{\left( 1-x \right)}^{4}}}+\dfrac{{{c}^{2}}{{x}^{2}}}{{{\left( 1-x \right)}^{6}}}+\dfrac{{{c}^{3}}{{x}^{3}}}{{{\left( 1-x \right)}^{8}}}+..... \right)$
So the coefficient of ${{x}^{n-1}}$ in $\dfrac{1}{{{\left( 1-x \right)}^{2}}-cx}$ is equal to coefficient of ${{x}^{n-1}}$ in $\left( \dfrac{1}{{{\left( 1-x \right)}^{2}}}+\dfrac{cx}{{{\left( 1-x \right)}^{4}}}+\dfrac{{{c}^{2}}{{x}^{2}}}{{{\left( 1-x \right)}^{6}}}+\dfrac{{{c}^{3}}{{x}^{3}}}{{{\left( 1-x \right)}^{8}}}+..... \right)$ = coefficient of ${{x}^{n-1}}$ in $\sum\limits_{r=0}^{\infty }{\dfrac{{{c}^{r}}{{x}^{r}}}{{{\left( 1-x \right)}^{2r+2}}}}$
=coefficient of ${{x}^{n-1-r}}$ in $\sum\limits_{r=0}^{\infty }{\dfrac{{{c}^{r}}}{{{\left( 1-x \right)}^{2r+2}}}}$
We know that coefficient of ${{x}^{p}}$ in ${{\left( 1-x \right)}^{-m}}$ is $\left( m+p-1 \right){{C}_{p}}$ or $\left( m+p-1 \right){{C}_{m-1}}$
Here p is $n-1-r$ and m is $2r+2$
Coefficient of ${{x}^{n-1-r}}$ in $\sum\limits_{r=0}^{\infty }{\dfrac{{{c}^{r}}}{{{\left( 1-x \right)}^{2r+2}}}}$=$\sum\limits_{r=0}^{\infty }{{}}$ (coefficient of ${{x}^{n-1-r}}$ in $\dfrac{{{c}^{r}}}{{{\left( 1-x \right)}^{2r+2}}}$ )
$\Rightarrow $ Coefficient of ${{x}^{n-1-r}}$ in $\sum\limits_{r=0}^{\infty }{\dfrac{{{c}^{r}}}{{{\left( 1-x \right)}^{2r+2}}}}$ = $\sum\limits_{r=0}^{\infty }{{}}$${{c}^{r}}\times \left( n-1-r+2r+2-1 \right){{C}_{2r+2-1}}$
$\Rightarrow $ Coefficient of ${{x}^{n-1-r}}$ in $\sum\limits_{r=0}^{\infty }{\dfrac{{{c}^{r}}}{{{\left( 1-x \right)}^{2r+2}}}}$ = $\sum\limits_{r=0}^{\infty }{\left( n+r \right){{C}_{2r+1}}\times {{c}^{r}}}$
$\Rightarrow \sum\limits_{r=0}^{\infty }{\left( n+r \right){{C}_{2r+1}}\times {{c}^{r}}}=\sum\limits_{r=0}^{\infty }{\dfrac{\left( n+r \right)\times \left( n+r-1 \right)\times .........\left( n-(r-1) \right)\times \left( n-r \right)\times {{c}^{r}}}{2}}$
We can see there is $\left( n+r \right)\times \left( n-r \right)$ , $\left( n+r-1 \right)\times \left( n-(r-1) \right)$ ,……..till $\left( n+1 \right)\times \left( n-1 \right)$ and n is left out. We know that $\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}}$ so taking n common and multiply these terms we get
$\Rightarrow \sum\limits_{r=0}^{\infty }{\dfrac{\left( n+r \right)\times \left( n+r-1 \right)\times .........\left( n-(r-1) \right)\times \left( n-r \right){{c}^{r}}}{\left| \!{\underline {\,
2r+1 \,}} \right. }}=n\times \sum\limits_{r=0}^{\infty }{\dfrac{\left( {{n}^{2}}-{{r}^{2}} \right)\left( {{n}^{2}}-{{(r-1)}^{2}} \right).........\left( {{n}^{2}}-{{2}^{2}} \right)\left( {{n}^{2}}-{{1}^{2}} \right){{c}^{r}}}{\left| \!{\underline {\,
2r+1 \,}} \right. }}$
So expanding the term we get $n\left\{ 1+\dfrac{{{n}^{2}}-1}{\left| \!{\underline {\,
3 \,}} \right. }c+\dfrac{\left( {{n}^{2}}-1 \right)\left( {{n}^{2}}-4 \right)}{\left| \!{\underline {\,
5 \,}} \right. }{{c}^{2}}+\dfrac{\left( {{n}^{2}}-1 \right)\left( {{n}^{2}}-4 \right)\left( {{n}^{2}}-9 \right)}{\left| \!{\underline {\,
7 \,}} \right. }{{c}^{3}}+........ \right\}$.
Now we can see from the above proof that the coefficient of
${{x}^{n}}$ in the expansion of $\dfrac{x}{{{\left( 1-x \right)}^{2}}-cx}$ is $n\left\{ 1+\dfrac{{{n}^{2}}-1}{\left| \!{\underline {\,
3 \,}} \right. }c+\dfrac{\left( {{n}^{2}}-1 \right)\left( {{n}^{2}}-4 \right)}{\left| \!{\underline {\,
5 \,}} \right. }{{c}^{2}}+\dfrac{\left( {{n}^{2}}-1 \right)\left( {{n}^{2}}-4 \right)\left( {{n}^{2}}-9 \right)}{\left| \!{\underline {\,
7 \,}} \right. }{{c}^{3}}+........ \right\}$
Keep in mind that all the expansion of series is valid when
$-1\le x\le 1$
$-1\le \dfrac{cx}{{{\left( 1-x \right)}^{2}}}\le 1$
Note: Always keep in mind that coefficient of ${{x}^{n}}$ in in a series which is in the form ${{x}^{r}}\times S$ where S is a series will be equal to coefficient of ${{x}^{n-r}}$ in S. we have seen this in the above question. Some infinite series will be valid only in a specific range of x. So try to mention the range while solving.
$\dfrac{1}{1-x}=1+x+{{x}^{2}}+{{x}^{3}}+......$ where $-1\le x\le 1$ and another series ${{\left( 1-x \right)}^{-n}}=1+nx+\dfrac{n\left( n+1 \right)}{\left| \!{\underline {\,
2 \,}} \right. }{{x}^{2}}+\dfrac{n\left( n+1 \right)\left( n+2 \right)}{\left| \!{\underline {\,
3 \,}} \right. }......$ where $-1\le x\le 1$ we can write
${{\left( 1-x \right)}^{-n}}=1+\sum\limits_{r=0}^{\infty }{(n+r){{C}_{r+1}}}{{x}^{r+1}}$ . Coefficient of ${{x}^{r}}$ in ${{\left( 1-x \right)}^{-n}}$ is $\left( n+r-1 \right){{C}_{r}}$ .
Complete step by step answer:
The coefficient of ${{x}^{n}}$ in the series $\dfrac{x}{{{\left( 1-x \right)}^{2}}-cx}$ is equal to coefficient of ${{x}^{n-1}}$ in the series $\dfrac{1}{{{\left( 1-x \right)}^{2}}-cx}$
Taking $\left( 1-{{x}^{2}} \right)$ common in the denominator we get
$\Rightarrow \dfrac{1}{{{\left( 1-x \right)}^{2}}-cx}=\dfrac{1}{{{\left( 1-x \right)}^{2}}}\left[ \dfrac{1}{1-\dfrac{cx}{{{\left( 1-x \right)}^{2}}}} \right]$
Let’ expand the term $\dfrac{1}{1-\left( \dfrac{cx}{{{\left( 1-x \right)}^{2}}} \right)}$
We can assume the $\dfrac{cx}{{{\left( 1-x \right)}^{2}}}$ as y then it will be $\dfrac{1}{1-y}$ then we can expand the term.
$\dfrac{1}{1-\left( \dfrac{cx}{{{\left( 1-x \right)}^{2}}} \right)}=1+\dfrac{cx}{{{\left( 1-x \right)}^{2}}}+{{\left( \dfrac{cx}{{{\left( 1-x \right)}^{2}}} \right)}^{2}}+{{\left( \dfrac{cx}{{{\left( 1-x \right)}^{2}}} \right)}^{3}}+......$ $-1\le \dfrac{cx}{{{\left( 1-x \right)}^{2}}}\le 1$
$\Rightarrow \dfrac{1}{1-\left( \dfrac{cx}{{{\left( 1-x \right)}^{2}}} \right)}=1+\dfrac{cx}{{{\left( 1-x \right)}^{2}}}+\dfrac{{{c}^{2}}{{x}^{2}}}{{{\left( 1-x \right)}^{4}}}+\dfrac{{{c}^{3}}{{x}^{3}}}{{{\left( 1-x \right)}^{6}}}+.....$ $-1\le \dfrac{cx}{{{\left( 1-x \right)}^{2}}}\le 1$
Now we can write
$\dfrac{1}{{{\left( 1-x \right)}^{2}}-cx}=\dfrac{1}{{{\left( 1-x \right)}^{2}}}\left( 1+\dfrac{cx}{{{\left( 1-x \right)}^{2}}}+\dfrac{{{c}^{2}}{{x}^{2}}}{{{\left( 1-x \right)}^{4}}}+\dfrac{{{c}^{3}}{{x}^{3}}}{{{\left( 1-x \right)}^{6}}}+..... \right)$
$\dfrac{1}{{{\left( 1-x \right)}^{2}}-cx}=\left( \dfrac{1}{{{\left( 1-x \right)}^{2}}}+\dfrac{cx}{{{\left( 1-x \right)}^{4}}}+\dfrac{{{c}^{2}}{{x}^{2}}}{{{\left( 1-x \right)}^{6}}}+\dfrac{{{c}^{3}}{{x}^{3}}}{{{\left( 1-x \right)}^{8}}}+..... \right)$
So the coefficient of ${{x}^{n-1}}$ in $\dfrac{1}{{{\left( 1-x \right)}^{2}}-cx}$ is equal to coefficient of ${{x}^{n-1}}$ in $\left( \dfrac{1}{{{\left( 1-x \right)}^{2}}}+\dfrac{cx}{{{\left( 1-x \right)}^{4}}}+\dfrac{{{c}^{2}}{{x}^{2}}}{{{\left( 1-x \right)}^{6}}}+\dfrac{{{c}^{3}}{{x}^{3}}}{{{\left( 1-x \right)}^{8}}}+..... \right)$ = coefficient of ${{x}^{n-1}}$ in $\sum\limits_{r=0}^{\infty }{\dfrac{{{c}^{r}}{{x}^{r}}}{{{\left( 1-x \right)}^{2r+2}}}}$
=coefficient of ${{x}^{n-1-r}}$ in $\sum\limits_{r=0}^{\infty }{\dfrac{{{c}^{r}}}{{{\left( 1-x \right)}^{2r+2}}}}$
We know that coefficient of ${{x}^{p}}$ in ${{\left( 1-x \right)}^{-m}}$ is $\left( m+p-1 \right){{C}_{p}}$ or $\left( m+p-1 \right){{C}_{m-1}}$
Here p is $n-1-r$ and m is $2r+2$
Coefficient of ${{x}^{n-1-r}}$ in $\sum\limits_{r=0}^{\infty }{\dfrac{{{c}^{r}}}{{{\left( 1-x \right)}^{2r+2}}}}$=$\sum\limits_{r=0}^{\infty }{{}}$ (coefficient of ${{x}^{n-1-r}}$ in $\dfrac{{{c}^{r}}}{{{\left( 1-x \right)}^{2r+2}}}$ )
$\Rightarrow $ Coefficient of ${{x}^{n-1-r}}$ in $\sum\limits_{r=0}^{\infty }{\dfrac{{{c}^{r}}}{{{\left( 1-x \right)}^{2r+2}}}}$ = $\sum\limits_{r=0}^{\infty }{{}}$${{c}^{r}}\times \left( n-1-r+2r+2-1 \right){{C}_{2r+2-1}}$
$\Rightarrow $ Coefficient of ${{x}^{n-1-r}}$ in $\sum\limits_{r=0}^{\infty }{\dfrac{{{c}^{r}}}{{{\left( 1-x \right)}^{2r+2}}}}$ = $\sum\limits_{r=0}^{\infty }{\left( n+r \right){{C}_{2r+1}}\times {{c}^{r}}}$
$\Rightarrow \sum\limits_{r=0}^{\infty }{\left( n+r \right){{C}_{2r+1}}\times {{c}^{r}}}=\sum\limits_{r=0}^{\infty }{\dfrac{\left( n+r \right)\times \left( n+r-1 \right)\times .........\left( n-(r-1) \right)\times \left( n-r \right)\times {{c}^{r}}}{2}}$
We can see there is $\left( n+r \right)\times \left( n-r \right)$ , $\left( n+r-1 \right)\times \left( n-(r-1) \right)$ ,……..till $\left( n+1 \right)\times \left( n-1 \right)$ and n is left out. We know that $\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}}$ so taking n common and multiply these terms we get
$\Rightarrow \sum\limits_{r=0}^{\infty }{\dfrac{\left( n+r \right)\times \left( n+r-1 \right)\times .........\left( n-(r-1) \right)\times \left( n-r \right){{c}^{r}}}{\left| \!{\underline {\,
2r+1 \,}} \right. }}=n\times \sum\limits_{r=0}^{\infty }{\dfrac{\left( {{n}^{2}}-{{r}^{2}} \right)\left( {{n}^{2}}-{{(r-1)}^{2}} \right).........\left( {{n}^{2}}-{{2}^{2}} \right)\left( {{n}^{2}}-{{1}^{2}} \right){{c}^{r}}}{\left| \!{\underline {\,
2r+1 \,}} \right. }}$
So expanding the term we get $n\left\{ 1+\dfrac{{{n}^{2}}-1}{\left| \!{\underline {\,
3 \,}} \right. }c+\dfrac{\left( {{n}^{2}}-1 \right)\left( {{n}^{2}}-4 \right)}{\left| \!{\underline {\,
5 \,}} \right. }{{c}^{2}}+\dfrac{\left( {{n}^{2}}-1 \right)\left( {{n}^{2}}-4 \right)\left( {{n}^{2}}-9 \right)}{\left| \!{\underline {\,
7 \,}} \right. }{{c}^{3}}+........ \right\}$.
Now we can see from the above proof that the coefficient of
${{x}^{n}}$ in the expansion of $\dfrac{x}{{{\left( 1-x \right)}^{2}}-cx}$ is $n\left\{ 1+\dfrac{{{n}^{2}}-1}{\left| \!{\underline {\,
3 \,}} \right. }c+\dfrac{\left( {{n}^{2}}-1 \right)\left( {{n}^{2}}-4 \right)}{\left| \!{\underline {\,
5 \,}} \right. }{{c}^{2}}+\dfrac{\left( {{n}^{2}}-1 \right)\left( {{n}^{2}}-4 \right)\left( {{n}^{2}}-9 \right)}{\left| \!{\underline {\,
7 \,}} \right. }{{c}^{3}}+........ \right\}$
Keep in mind that all the expansion of series is valid when
$-1\le x\le 1$
$-1\le \dfrac{cx}{{{\left( 1-x \right)}^{2}}}\le 1$
Note: Always keep in mind that coefficient of ${{x}^{n}}$ in in a series which is in the form ${{x}^{r}}\times S$ where S is a series will be equal to coefficient of ${{x}^{n-r}}$ in S. we have seen this in the above question. Some infinite series will be valid only in a specific range of x. So try to mention the range while solving.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

