
How do you show that ${{\tanh }^{-1}}\left( x \right)=\dfrac{1}{2}\ln \left( \dfrac{1+x}{1-x} \right)$?
Answer
535.2k+ views
Hint: We first describe the concept of hyperbolic functions. We express the basic formula of $\tanh y=\dfrac{{{e}^{2y}}-1}{{{e}^{2y}}+1}$. We used the inverse formula and then tried to find the value of $y$ with respect to $x$. Then using the logarithm formula we prove the given expression.
Complete step by step solution:
We use the concept of hyperbolic functions and formulas of logarithms.
We have been given the expression of ${{\tanh }^{-1}}\left( x \right)$. We assume ${{\tanh }^{-1}}\left( x \right)=y$.
Using the concept of inverse law, we get $x=\tanh y$.
We have the hyperbolic equation formula where $\tanh y=\dfrac{{{e}^{2y}}-1}{{{e}^{2y}}+1}$.
Therefore, the equation becomes $x=\tanh y=\dfrac{{{e}^{2y}}-1}{{{e}^{2y}}+1}$. We have $x=\dfrac{{{e}^{2y}}-1}{{{e}^{2y}}+1}$.
We try to find the value of $y$ with respect to $x$.
We apply the componendo-dividendo formula on the equation $\dfrac{x}{1}=\dfrac{{{e}^{2y}}-1}{{{e}^{2y}}+1}$ to find
$\begin{align}
& \dfrac{x}{1}=\dfrac{{{e}^{2y}}-1}{{{e}^{2y}}+1} \\
& \Rightarrow \dfrac{1}{x}=\dfrac{{{e}^{2y}}+1}{{{e}^{2y}}-1} \\
& \Rightarrow \dfrac{1+x}{1-x}=\dfrac{{{e}^{2y}}+1+{{e}^{2y}}-1}{{{e}^{2y}}+1-{{e}^{2y}}+1}=\dfrac{2{{e}^{2y}}}{2}={{e}^{2y}} \\
& \Rightarrow {{e}^{2y}}=\dfrac{1+x}{1-x} \\
\end{align}$
We now apply the logarithm formula to find the value of $y$.
We have $\log {{x}^{a}}=a\log x$. The power value of $a$ goes as a multiplication with $\log x$.
In case of logarithmic numbers having powers, we have to multiply the power in front of the logarithm to get the single logarithmic function. We have $\ln a={{\log }_{e}}a$.
Therefore, ${{\log }_{e}}\left( {{e}^{2y}} \right)={{\log }_{e}}\left( \dfrac{1+x}{1-x} \right)$.
Simplifying we get
$\begin{align}
& {{\log }_{e}}\left( {{e}^{2y}} \right)={{\log }_{e}}\left( \dfrac{1+x}{1-x} \right) \\
& \Rightarrow 2y{{\log }_{e}}e=\ln \left( \dfrac{1+x}{1-x} \right) \\
\end{align}$
We have the identity formula of ${{\log }_{x}}x=1$. This gives \[{{\log }_{e}}e=1\].
The final form becomes
$\begin{align}
& 2y=\ln \left( \dfrac{1+x}{1-x} \right) \\
& \Rightarrow y=\dfrac{1}{2}\ln \left( \dfrac{1+x}{1-x} \right) \\
\end{align}$
As we have ${{\tanh }^{-1}}\left( x \right)=y$, we get ${{\tanh }^{-1}}\left( x \right)=y=\dfrac{1}{2}\ln \left( \dfrac{1+x}{1-x} \right)$.
Thus proved, ${{\tanh }^{-1}}\left( x \right)=\dfrac{1}{2}\ln \left( \dfrac{1+x}{1-x} \right)$.
Note: Hyperbolic functions are related to the natural exponential function as well the circular sine and cosine functions. They are called “hyperbolic” because the relationship between the sine and cosine functions is the same as a unit hyperbola.
Complete step by step solution:
We use the concept of hyperbolic functions and formulas of logarithms.
We have been given the expression of ${{\tanh }^{-1}}\left( x \right)$. We assume ${{\tanh }^{-1}}\left( x \right)=y$.
Using the concept of inverse law, we get $x=\tanh y$.
We have the hyperbolic equation formula where $\tanh y=\dfrac{{{e}^{2y}}-1}{{{e}^{2y}}+1}$.
Therefore, the equation becomes $x=\tanh y=\dfrac{{{e}^{2y}}-1}{{{e}^{2y}}+1}$. We have $x=\dfrac{{{e}^{2y}}-1}{{{e}^{2y}}+1}$.
We try to find the value of $y$ with respect to $x$.
We apply the componendo-dividendo formula on the equation $\dfrac{x}{1}=\dfrac{{{e}^{2y}}-1}{{{e}^{2y}}+1}$ to find
$\begin{align}
& \dfrac{x}{1}=\dfrac{{{e}^{2y}}-1}{{{e}^{2y}}+1} \\
& \Rightarrow \dfrac{1}{x}=\dfrac{{{e}^{2y}}+1}{{{e}^{2y}}-1} \\
& \Rightarrow \dfrac{1+x}{1-x}=\dfrac{{{e}^{2y}}+1+{{e}^{2y}}-1}{{{e}^{2y}}+1-{{e}^{2y}}+1}=\dfrac{2{{e}^{2y}}}{2}={{e}^{2y}} \\
& \Rightarrow {{e}^{2y}}=\dfrac{1+x}{1-x} \\
\end{align}$
We now apply the logarithm formula to find the value of $y$.
We have $\log {{x}^{a}}=a\log x$. The power value of $a$ goes as a multiplication with $\log x$.
In case of logarithmic numbers having powers, we have to multiply the power in front of the logarithm to get the single logarithmic function. We have $\ln a={{\log }_{e}}a$.
Therefore, ${{\log }_{e}}\left( {{e}^{2y}} \right)={{\log }_{e}}\left( \dfrac{1+x}{1-x} \right)$.
Simplifying we get
$\begin{align}
& {{\log }_{e}}\left( {{e}^{2y}} \right)={{\log }_{e}}\left( \dfrac{1+x}{1-x} \right) \\
& \Rightarrow 2y{{\log }_{e}}e=\ln \left( \dfrac{1+x}{1-x} \right) \\
\end{align}$
We have the identity formula of ${{\log }_{x}}x=1$. This gives \[{{\log }_{e}}e=1\].
The final form becomes
$\begin{align}
& 2y=\ln \left( \dfrac{1+x}{1-x} \right) \\
& \Rightarrow y=\dfrac{1}{2}\ln \left( \dfrac{1+x}{1-x} \right) \\
\end{align}$
As we have ${{\tanh }^{-1}}\left( x \right)=y$, we get ${{\tanh }^{-1}}\left( x \right)=y=\dfrac{1}{2}\ln \left( \dfrac{1+x}{1-x} \right)$.
Thus proved, ${{\tanh }^{-1}}\left( x \right)=\dfrac{1}{2}\ln \left( \dfrac{1+x}{1-x} \right)$.
Note: Hyperbolic functions are related to the natural exponential function as well the circular sine and cosine functions. They are called “hyperbolic” because the relationship between the sine and cosine functions is the same as a unit hyperbola.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

