
Show that \[{r_1}{r_2}{r_3} = {r^3}{\cot ^2}\dfrac{A}{2}{\cot ^2}\dfrac{B}{2}{\cot ^2}\dfrac{C}{2}\] .
Answer
569.1k+ views
Hint: We now that in $ \vartriangle ABC $ , $ r $ is the radius of in circle and $ {r_1} $ , $ {r_2} $ and $ {r_3} $ are the radii of inscribed circle opposite to the vertices A, B and C respectively. We need to use the relations between the in radius and half angles as well as between the ex-radii and half angles to prove the given equation.
Formulas used:
If $ R $ is the radius of circum-circle of $ \vartriangle ABC $ , $ r $ is the radius of in circle and $ {r_1} $ , $ {r_2} $ and $ {r_3} $ are the radii of escribed circle opposite to the vertices A, B and C respectively, then
\[r = 4R\sin \left( {\dfrac{A}{2}} \right)\sin \left( {\dfrac{B}{2}} \right)\sin \left( {\dfrac{C}{2}} \right)\]
\[{r_1} = 4R\sin \left( {\dfrac{A}{2}} \right)\cos \left( {\dfrac{B}{2}} \right)\cos \left( {\dfrac{C}{2}} \right)\]
\[{r_2} = 4R\cos \left( {\dfrac{A}{2}} \right)\sin \left( {\dfrac{B}{2}} \right)\cos \left( {\dfrac{C}{2}} \right)\]
\[{r_3} = 4R\cos \left( {\dfrac{A}{2}} \right)\cos \left( {\dfrac{B}{2}} \right)\sin \left( {\dfrac{C}{2}} \right)\]
Complete step-by-step answer:
We are given that $ L.H.S. = {r_1}{r_2}{r_3} $
But, we know that \[{r_1} = 4R\sin \left( {\dfrac{A}{2}} \right)\cos \left( {\dfrac{B}{2}} \right)\cos \left( {\dfrac{C}{2}} \right)\] , \[{r_2} = 4R\cos \left( {\dfrac{A}{2}} \right)\sin \left( {\dfrac{B}{2}} \right)\cos \left( {\dfrac{C}{2}} \right)\] and \[{r_3} = 4R\cos \left( {\dfrac{A}{2}} \right)\cos \left( {\dfrac{B}{2}} \right)\sin \left( {\dfrac{C}{2}} \right)\]. Therefore we can say that
\[{r_1}{r_2}{r_3} = \;\;\left[ {4R\sin \left( {\dfrac{A}{2}} \right)\cos \left( {\dfrac{B}{2}} \right)\cos \left( {\dfrac{C}{2}} \right)} \right] \times \left[ {4R\cos \left( {\dfrac{A}{2}} \right)\sin \left( {\dfrac{B}{2}} \right)\cos \left( {\dfrac{C}{2}} \right)} \right] \times \left[ {4R\cos \left( {\dfrac{A}{2}} \right)\cos \left( {\dfrac{B}{2}} \right)\sin \left( {\dfrac{C}{2}} \right)} \right]\]
Now, we will divide both the sides by $ {r^3} $ and putting the value \[r = 4R\sin \left( {\dfrac{A}{2}} \right)\sin \left( {\dfrac{B}{2}} \right)\sin \left( {\dfrac{C}{2}} \right)\] on the right side.
\[ \Rightarrow \dfrac{{{r_1}{r_2}{r_3}}}{{{r^3}}} = \dfrac{{\;\left[ {4R\sin \left( {\dfrac{A}{2}} \right)\cos \left( {\dfrac{B}{2}} \right)\cos \left( {\dfrac{C}{2}} \right)} \right] \times \left[ {4R\cos \left( {\dfrac{A}{2}} \right)\sin \left( {\dfrac{B}{2}} \right)\cos \left( {\dfrac{C}{2}} \right)} \right] \times \left[ {4R\cos \left( {\dfrac{A}{2}} \right)\cos \left( {\dfrac{B}{2}} \right)\sin \left( {\dfrac{C}{2}} \right)} \right]}}{{{{\left[ {4R\sin \left( {\dfrac{A}{2}} \right)\sin \left( {\dfrac{B}{2}} \right)\sin \left( {\dfrac{C}{2}} \right)} \right]}^3}}}\]
Simplifying on the right side, we get
\[
\Rightarrow \dfrac{{{r_1}{r_2}{r_3}}}{{{r^3}}} = \dfrac{{64{R^3}\sin \left( {\dfrac{A}{2}} \right)\sin \left( {\dfrac{B}{2}} \right)\sin \left( {\dfrac{C}{2}} \right){{\cos }^2}\left( {\dfrac{A}{2}} \right){{\cos }^2}\left( {\dfrac{B}{2}} \right){{\cos }^2}\left( {\dfrac{C}{2}} \right)}}{{64{R^3}{{\sin }^3}\left( {\dfrac{A}{2}} \right){{\sin }^3}\left( {\dfrac{B}{2}} \right){{\sin }^3}\left( {\dfrac{C}{2}} \right)}} \\
\Rightarrow \dfrac{{{r_1}{r_2}{r_3}}}{{{r^3}}} = \dfrac{{{{\cos }^2}\left( {\dfrac{A}{2}} \right){{\cos }^2}\left( {\dfrac{B}{2}} \right){{\cos }^2}\left( {\dfrac{C}{2}} \right)}}{{{{\sin }^2}\left( {\dfrac{A}{2}} \right){{\sin }^2}\left( {\dfrac{B}{2}} \right){{\sin }^2}\left( {\dfrac{C}{2}} \right)}} \\
\]
We know that $ \dfrac{{\cos \theta }}{{\sin \theta }} = \cot \theta $
\[
\Rightarrow \dfrac{{{r_1}{r_2}{r_3}}}{{{r^3}}} = {\cot ^2}\left( {\dfrac{A}{2}} \right){\cot ^2}\left( {\dfrac{B}{2}} \right){\cot ^2}\left( {\dfrac{C}{2}} \right) \\
\Rightarrow {r_1}{r_2}{r_3} = {r^3}{\cot ^2}\left( {\dfrac{A}{2}} \right){\cot ^2}\left( {\dfrac{B}{2}} \right){\cot ^2}\left( {\dfrac{C}{2}} \right) = R.H.S. \\
\]
Hence, it is proved that \[{r_1}{r_2}{r_3} = {r^3}{\cot ^2}\dfrac{A}{2}{\cot ^2}\dfrac{B}{2}{\cot ^2}\dfrac{C}{2}\]
So, the correct answer is “\[{r_1}{r_2}{r_3} = {r^3}{\cot ^2}\dfrac{A}{2}{\cot ^2}\dfrac{B}{2}{\cot ^2}\dfrac{C}{2}\]”.
Note: Here, we have seen the terms in circle and inscribed circles of triangle. Let us understand both the terms. When a circle is constructed inside the triangle in such a way that the circle touches all the sides of the triangle is called an in-circle or an inscribed circle. The centre of the incircle is known as an in centre of the triangle. The incentre is also the point of intersection of internal bisectors of the triangle. The radius of the in circle is called the in radius of triangle. The circle which touches one of the sides of the triangle is called an escribed circle. Therefore, an escribed circle is in the exterior of the triangle.
Formulas used:
If $ R $ is the radius of circum-circle of $ \vartriangle ABC $ , $ r $ is the radius of in circle and $ {r_1} $ , $ {r_2} $ and $ {r_3} $ are the radii of escribed circle opposite to the vertices A, B and C respectively, then
\[r = 4R\sin \left( {\dfrac{A}{2}} \right)\sin \left( {\dfrac{B}{2}} \right)\sin \left( {\dfrac{C}{2}} \right)\]
\[{r_1} = 4R\sin \left( {\dfrac{A}{2}} \right)\cos \left( {\dfrac{B}{2}} \right)\cos \left( {\dfrac{C}{2}} \right)\]
\[{r_2} = 4R\cos \left( {\dfrac{A}{2}} \right)\sin \left( {\dfrac{B}{2}} \right)\cos \left( {\dfrac{C}{2}} \right)\]
\[{r_3} = 4R\cos \left( {\dfrac{A}{2}} \right)\cos \left( {\dfrac{B}{2}} \right)\sin \left( {\dfrac{C}{2}} \right)\]
Complete step-by-step answer:
We are given that $ L.H.S. = {r_1}{r_2}{r_3} $
But, we know that \[{r_1} = 4R\sin \left( {\dfrac{A}{2}} \right)\cos \left( {\dfrac{B}{2}} \right)\cos \left( {\dfrac{C}{2}} \right)\] , \[{r_2} = 4R\cos \left( {\dfrac{A}{2}} \right)\sin \left( {\dfrac{B}{2}} \right)\cos \left( {\dfrac{C}{2}} \right)\] and \[{r_3} = 4R\cos \left( {\dfrac{A}{2}} \right)\cos \left( {\dfrac{B}{2}} \right)\sin \left( {\dfrac{C}{2}} \right)\]. Therefore we can say that
\[{r_1}{r_2}{r_3} = \;\;\left[ {4R\sin \left( {\dfrac{A}{2}} \right)\cos \left( {\dfrac{B}{2}} \right)\cos \left( {\dfrac{C}{2}} \right)} \right] \times \left[ {4R\cos \left( {\dfrac{A}{2}} \right)\sin \left( {\dfrac{B}{2}} \right)\cos \left( {\dfrac{C}{2}} \right)} \right] \times \left[ {4R\cos \left( {\dfrac{A}{2}} \right)\cos \left( {\dfrac{B}{2}} \right)\sin \left( {\dfrac{C}{2}} \right)} \right]\]
Now, we will divide both the sides by $ {r^3} $ and putting the value \[r = 4R\sin \left( {\dfrac{A}{2}} \right)\sin \left( {\dfrac{B}{2}} \right)\sin \left( {\dfrac{C}{2}} \right)\] on the right side.
\[ \Rightarrow \dfrac{{{r_1}{r_2}{r_3}}}{{{r^3}}} = \dfrac{{\;\left[ {4R\sin \left( {\dfrac{A}{2}} \right)\cos \left( {\dfrac{B}{2}} \right)\cos \left( {\dfrac{C}{2}} \right)} \right] \times \left[ {4R\cos \left( {\dfrac{A}{2}} \right)\sin \left( {\dfrac{B}{2}} \right)\cos \left( {\dfrac{C}{2}} \right)} \right] \times \left[ {4R\cos \left( {\dfrac{A}{2}} \right)\cos \left( {\dfrac{B}{2}} \right)\sin \left( {\dfrac{C}{2}} \right)} \right]}}{{{{\left[ {4R\sin \left( {\dfrac{A}{2}} \right)\sin \left( {\dfrac{B}{2}} \right)\sin \left( {\dfrac{C}{2}} \right)} \right]}^3}}}\]
Simplifying on the right side, we get
\[
\Rightarrow \dfrac{{{r_1}{r_2}{r_3}}}{{{r^3}}} = \dfrac{{64{R^3}\sin \left( {\dfrac{A}{2}} \right)\sin \left( {\dfrac{B}{2}} \right)\sin \left( {\dfrac{C}{2}} \right){{\cos }^2}\left( {\dfrac{A}{2}} \right){{\cos }^2}\left( {\dfrac{B}{2}} \right){{\cos }^2}\left( {\dfrac{C}{2}} \right)}}{{64{R^3}{{\sin }^3}\left( {\dfrac{A}{2}} \right){{\sin }^3}\left( {\dfrac{B}{2}} \right){{\sin }^3}\left( {\dfrac{C}{2}} \right)}} \\
\Rightarrow \dfrac{{{r_1}{r_2}{r_3}}}{{{r^3}}} = \dfrac{{{{\cos }^2}\left( {\dfrac{A}{2}} \right){{\cos }^2}\left( {\dfrac{B}{2}} \right){{\cos }^2}\left( {\dfrac{C}{2}} \right)}}{{{{\sin }^2}\left( {\dfrac{A}{2}} \right){{\sin }^2}\left( {\dfrac{B}{2}} \right){{\sin }^2}\left( {\dfrac{C}{2}} \right)}} \\
\]
We know that $ \dfrac{{\cos \theta }}{{\sin \theta }} = \cot \theta $
\[
\Rightarrow \dfrac{{{r_1}{r_2}{r_3}}}{{{r^3}}} = {\cot ^2}\left( {\dfrac{A}{2}} \right){\cot ^2}\left( {\dfrac{B}{2}} \right){\cot ^2}\left( {\dfrac{C}{2}} \right) \\
\Rightarrow {r_1}{r_2}{r_3} = {r^3}{\cot ^2}\left( {\dfrac{A}{2}} \right){\cot ^2}\left( {\dfrac{B}{2}} \right){\cot ^2}\left( {\dfrac{C}{2}} \right) = R.H.S. \\
\]
Hence, it is proved that \[{r_1}{r_2}{r_3} = {r^3}{\cot ^2}\dfrac{A}{2}{\cot ^2}\dfrac{B}{2}{\cot ^2}\dfrac{C}{2}\]
So, the correct answer is “\[{r_1}{r_2}{r_3} = {r^3}{\cot ^2}\dfrac{A}{2}{\cot ^2}\dfrac{B}{2}{\cot ^2}\dfrac{C}{2}\]”.
Note: Here, we have seen the terms in circle and inscribed circles of triangle. Let us understand both the terms. When a circle is constructed inside the triangle in such a way that the circle touches all the sides of the triangle is called an in-circle or an inscribed circle. The centre of the incircle is known as an in centre of the triangle. The incentre is also the point of intersection of internal bisectors of the triangle. The radius of the in circle is called the in radius of triangle. The circle which touches one of the sides of the triangle is called an escribed circle. Therefore, an escribed circle is in the exterior of the triangle.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

