
Show that $^n{C_r}{ = ^{n - 1}}{C_r}{ + ^{n - 1}}{C_{r - 1}}$
Answer
526.2k+ views
Hint: The only way to go ahead with this problem is to start applying the formula of the combinations and proceed. Since the formula contains factorial you can use the factorial properties as needed to simplify the equation. The process also involves back and forth rearrangements of terms.
Complete step by step answer:
We directly have to use the formula of $^n{C_r}$ directly here to prove the above. The general formula to be used in the entire process will be as follows
$^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}$
First we will start with the Right hand side.
R.H.S = $^{n - 1}{C_r}{ + ^{n - 1}}{C_{r - 1}}$
$ = \dfrac{{\left( {n - 1} \right)!}}{{r!\left( {n - 1 - r} \right)!}} + \dfrac{{\left( {n - 1} \right)!}}{{\left( {r - 1} \right)!\left( {n - 1 - r + 1} \right)!}}$
$ = \dfrac{{\left( {n - 1} \right)!}}{{r!\left( {n - 1 - r} \right)!}} + \dfrac{{\left( {n - 1} \right)!}}{{\left( {r - 1} \right)!\left( {n - r} \right)!}}$
Now we know that $p! = p\left( {p - 1} \right)!$ is the property of factorial which we can use in the first term
R.H.S $ = \dfrac{{\left( {n - 1} \right)!}}{{r\left( {r - 1} \right)!\left( {n - 1 - r} \right)!}} + \dfrac{{\left( {n - 1} \right)!}}{{\left( {r - 1} \right)!\left( {n - r} \right)!}}$
Again applying the factorial property for second term we get
R.H.S$ = \dfrac{{\left( {n - 1} \right)!}}{{r\left( {r - 1} \right)!\left( {n - 1 - r} \right)!}} + \dfrac{{\left( {n - 1} \right)!}}{{\left( {r - 1} \right)!\left( {n - r} \right)\left( {n - r - 1} \right)!}}$
Taking out the common terms we get
R.H.S $ = \dfrac{{\left( {n - 1} \right)!}}{{\left( {r - 1} \right)!\left( {n - r - 1} \right)!}}\left( {\dfrac{1}{r} + \dfrac{1}{{n - r}}} \right)$
Solving the bracket we get
R.H.S $ = \dfrac{{\left( {n - 1} \right)!}}{{\left( {r - 1} \right)!\left( {n - r - 1} \right)!}}\left( {\dfrac{{n - r + r}}{{r\left( {n - r} \right)}}} \right)$
$ = \dfrac{{\left( {n - 1} \right)!}}{{\left( {r - 1} \right)!\left( {n - r - 1} \right)!}}.\dfrac{n}{{r\left( {n - r} \right)}}$
$ = \dfrac{{n\left( {n - 1} \right)!}}{{r\left( {r - 1} \right)!\left( {n - r} \right)\left( {n - r - 1} \right)!}}$
Using the same property of factorial above we get
R.H.S=$\dfrac{{n!}}{{r!\left( {n - r} \right)!}}$ = $^n{C_r}$= L.H.S
Hence we have proved that $^n{C_r}{ = ^{n - 1}}{C_r}{ + ^{n - 1}}{C_{r - 1}}$
Note: The above proof is one of the standard results of combination. This results are used as properties when solving examples related to combinations. This results are also used in solving sums from different fields which involves combination as their main concept such as in binomial distribution.
Complete step by step answer:
We directly have to use the formula of $^n{C_r}$ directly here to prove the above. The general formula to be used in the entire process will be as follows
$^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}$
First we will start with the Right hand side.
R.H.S = $^{n - 1}{C_r}{ + ^{n - 1}}{C_{r - 1}}$
$ = \dfrac{{\left( {n - 1} \right)!}}{{r!\left( {n - 1 - r} \right)!}} + \dfrac{{\left( {n - 1} \right)!}}{{\left( {r - 1} \right)!\left( {n - 1 - r + 1} \right)!}}$
$ = \dfrac{{\left( {n - 1} \right)!}}{{r!\left( {n - 1 - r} \right)!}} + \dfrac{{\left( {n - 1} \right)!}}{{\left( {r - 1} \right)!\left( {n - r} \right)!}}$
Now we know that $p! = p\left( {p - 1} \right)!$ is the property of factorial which we can use in the first term
R.H.S $ = \dfrac{{\left( {n - 1} \right)!}}{{r\left( {r - 1} \right)!\left( {n - 1 - r} \right)!}} + \dfrac{{\left( {n - 1} \right)!}}{{\left( {r - 1} \right)!\left( {n - r} \right)!}}$
Again applying the factorial property for second term we get
R.H.S$ = \dfrac{{\left( {n - 1} \right)!}}{{r\left( {r - 1} \right)!\left( {n - 1 - r} \right)!}} + \dfrac{{\left( {n - 1} \right)!}}{{\left( {r - 1} \right)!\left( {n - r} \right)\left( {n - r - 1} \right)!}}$
Taking out the common terms we get
R.H.S $ = \dfrac{{\left( {n - 1} \right)!}}{{\left( {r - 1} \right)!\left( {n - r - 1} \right)!}}\left( {\dfrac{1}{r} + \dfrac{1}{{n - r}}} \right)$
Solving the bracket we get
R.H.S $ = \dfrac{{\left( {n - 1} \right)!}}{{\left( {r - 1} \right)!\left( {n - r - 1} \right)!}}\left( {\dfrac{{n - r + r}}{{r\left( {n - r} \right)}}} \right)$
$ = \dfrac{{\left( {n - 1} \right)!}}{{\left( {r - 1} \right)!\left( {n - r - 1} \right)!}}.\dfrac{n}{{r\left( {n - r} \right)}}$
$ = \dfrac{{n\left( {n - 1} \right)!}}{{r\left( {r - 1} \right)!\left( {n - r} \right)\left( {n - r - 1} \right)!}}$
Using the same property of factorial above we get
R.H.S=$\dfrac{{n!}}{{r!\left( {n - r} \right)!}}$ = $^n{C_r}$= L.H.S
Hence we have proved that $^n{C_r}{ = ^{n - 1}}{C_r}{ + ^{n - 1}}{C_{r - 1}}$
Note: The above proof is one of the standard results of combination. This results are used as properties when solving examples related to combinations. This results are also used in solving sums from different fields which involves combination as their main concept such as in binomial distribution.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

