Show that:
(i) ${\left( {3x + 7} \right)^2} - 84x = {\left( {3x - 7} \right)^2}$
(ii)${\left( {9p - 5q} \right)^2} + 180pq = {\left( {9p + 5q} \right)^2}$
(iii)${\left( {\dfrac{4}{3}m - \dfrac{3}{4}n} \right)^2} + 2mn = \dfrac{{16}}{9}{m^2} + \dfrac{9}{{16}}{n^2}$
(iv)${\left( {4pq + 3q} \right)^2} - {\left( {4pq - 3q} \right)^2} = 48p{q^2}$
(v)$\left( {a - b} \right)\left( {a + b} \right) + \left( {b - c} \right)\left( {b + c} \right) + \left( {c - a} \right)\left( {c + a} \right) = 0$
Last updated date: 28th Mar 2023
•
Total views: 308.4k
•
Views today: 6.85k
Answer
308.4k+ views
Hint: The given statements resemble the following algebraic identities.
${\left( {a + b} \right)^2} - 4ab = {\left( {a - b} \right)^2}$, ${\left( {a - b} \right)^2} + 4ab = {\left( {a + b} \right)^2}$, ${\left( {a + b} \right)^2} - {\left( {a - b} \right)^2} = 4ab$
Use these to prove the given statements.
Let us prove the statements one by one using the identities.
(i) ${\left( {3x + 7} \right)^2} - 84x = {\left( {3x - 7} \right)^2}$
We know that, ${\left( {a + b} \right)^2} - 4ab = {\left( {a - b} \right)^2}$ …(1)
Let us prove this identity first.
LHS=${\left( {a + b} \right)^2} - 4ab$
Expand the brackets using the identity ${\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab$
$
= {a^2} + {b^2} + 2ab - 4ab \\
= {a^2} + {b^2} - 2ab \\
$
We know that${\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab$. Using this in the previous step,
$ = {\left( {a - b} \right)^2}$
=RHS
Hence, the identity is proved. Now let us use this to prove the given statement.
${\left( {3x + 7} \right)^2} - 84x = {\left( {3x - 7} \right)^2}$ is the given statement to be proved.
LHS$ = {\left( {3x + 7} \right)^2} - 84x$
Using identity (1) here, we find that $a = 3x,b = 7$
Substituting it in the LHS of (1) and using the identity, we get
\[
LHS = {\left( {3x + 7} \right)^2} - 4\left( {3x} \right)\left( 7 \right) \\
= {\left( {3x + 7} \right)^2} - 84x \\
= {\left( {3x - 7} \right)^2} \\
= RHS \\
\]
Hence, ${\left( {3x + 7} \right)^2} - 84x = {\left( {3x - 7} \right)^2}$is proved.
(ii)${\left( {9p - 5q} \right)^2} + 180pq = {\left( {9p + 5q} \right)^2}$
We know that, ${\left( {a - b} \right)^2} + 4ab = {\left( {a + b} \right)^2}$ …(2)
Let us prove this identity first.
LHS=${\left( {a - b} \right)^2} + 4ab$
Expand the brackets using the identity ${\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab$
$
= {a^2} + {b^2} - 2ab + 4ab \\
= {a^2} + {b^2} + 2ab \\
$
We know that${\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab$. Using this in the previous step,
$ = {\left( {a + b} \right)^2}$
=RHS
Hence, the identity is proved. Now let us use this to prove the given statement.
${\left( {9p - 5q} \right)^2} + 180pq = {\left( {9p + 5q} \right)^2}$ is the given statement to be proved.
LHS$ = {\left( {9p - 5q} \right)^2} + 180pq$
Using identity (2) here, we find that $a = 9p,b = 5q$
Substituting it in the LHS of (2) and using the identity, we get
\[
LHS = {\left( {9p - 5q} \right)^2} + 4\left( {9p} \right)\left( {5q} \right) \\
= {\left( {9p - 5q} \right)^2} + 180pq \\
= {\left( {9p + 5q} \right)^2} \\
= RHS \\
\]
Hence, ${\left( {9p - 5q} \right)^2} + 180pq = {\left( {9p + 5q} \right)^2}$is proved.
(iii)${\left( {\dfrac{4}{3}m - \dfrac{3}{4}n} \right)^2} + 2mn = \dfrac{{16}}{9}{m^2} + \dfrac{9}{{16}}{n^2}$
We know that, ${\left( {a - b} \right)^2} + 4ab = {\left( {a + b} \right)^2}$
We have already proved this identity.
Using this identity here, we find that $a = \dfrac{4}{3}m,b = \dfrac{3}{4}n$
Substituting it in the LHS of (2) and using the identity, we get
\[
LHS = {\left( {\dfrac{4}{3}m - \dfrac{3}{4}n} \right)^2} + 4\left( {\dfrac{4}{3}m} \right)\left( {\dfrac{3}{4}n} \right) \\
= {\left( {\dfrac{4}{3}m - \dfrac{3}{4}n} \right)^2} + 4mn \\
= {\left( {\dfrac{4}{3}m + \dfrac{3}{4}n} \right)^2} \\
= \dfrac{{16}}{9}{m^2} + \dfrac{9}{{16}}{n^2} + 2\left( {\dfrac{4}{3}m} \right)\left( {\dfrac{3}{4}n} \right) \\
= \dfrac{{16}}{9}{m^2} + \dfrac{9}{{16}}{n^2} + 2mn \\
\]
Now we have proved ${\left( {\dfrac{4}{3}m - \dfrac{3}{4}n} \right)^2} + 4mn = \dfrac{{16}}{9}{m^2} + \dfrac{9}{{16}}{n^2} + 2mn$
Rearranging it we get,
${\left( {\dfrac{4}{3}m - \dfrac{3}{4}n} \right)^2} + 2mn = \dfrac{{16}}{9}{m^2} + \dfrac{9}{{16}}{n^2}$
Hence, ${\left( {9p - 5q} \right)^2} + 180pq = {\left( {9p + 5q} \right)^2}$is proved.
(iv)${\left( {4pq + 3q} \right)^2} - {\left( {4pq - 3q} \right)^2} = 48p{q^2}$
From identity (2), by rearranging it we get,
${\left( {a + b} \right)^2} - {\left( {a - b} \right)^2} = 4ab$ …(3)
Using identity (3) here, we find that $a = 4pq,b = 3q$
Substituting it in the LHS of (3) and using the identity, we get
$
{\left( {a + b} \right)^2} - {\left( {a - b} \right)^2} = {\left( {4pq + 3q} \right)^2} - {\left( {4pq - 3q} \right)^2} \\
= 4\left( {4pq} \right)\left( {3q} \right) \\
= 48p{q^2} \\
= RHS \\
$
Hence,${\left( {4pq + 3q} \right)^2} - {\left( {4pq - 3q} \right)^2} = 48p{q^2}$is proved.
(v)$\left( {a - b} \right)\left( {a + b} \right) + \left( {b - c} \right)\left( {b + c} \right) + \left( {c - a} \right)\left( {c + a} \right) = 0$
We know that, $\left( {a + b} \right)\left( {a - b} \right) = {a^2} - {b^2}$ …(4)
Using this identity, we need to open the brackets for the LHS of the given statement.
$
LHS = \left( {a - b} \right)\left( {a + b} \right) + \left( {b - c} \right)\left( {b + c} \right) + \left( {c - a} \right)\left( {c + a} \right) \\
= {a^2} - {b^2} + {b^2} - {c^2} + {c^2} - {a^2} \\
$
After cancelling the terms, we get
$LHS = 0 = RHS$
Hence,$\left( {a - b} \right)\left( {a + b} \right) + \left( {b - c} \right)\left( {b + c} \right) + \left( {c - a} \right)\left( {c + a} \right) = 0$is proved.
Note: These statements can also be proved without the use of the identities (1), (2) and (3) by just expanding the brackets and by simplifying it. But it would have been a little lengthier process than by using the identities.
${\left( {a + b} \right)^2} - 4ab = {\left( {a - b} \right)^2}$, ${\left( {a - b} \right)^2} + 4ab = {\left( {a + b} \right)^2}$, ${\left( {a + b} \right)^2} - {\left( {a - b} \right)^2} = 4ab$
Use these to prove the given statements.
Let us prove the statements one by one using the identities.
(i) ${\left( {3x + 7} \right)^2} - 84x = {\left( {3x - 7} \right)^2}$
We know that, ${\left( {a + b} \right)^2} - 4ab = {\left( {a - b} \right)^2}$ …(1)
Let us prove this identity first.
LHS=${\left( {a + b} \right)^2} - 4ab$
Expand the brackets using the identity ${\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab$
$
= {a^2} + {b^2} + 2ab - 4ab \\
= {a^2} + {b^2} - 2ab \\
$
We know that${\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab$. Using this in the previous step,
$ = {\left( {a - b} \right)^2}$
=RHS
Hence, the identity is proved. Now let us use this to prove the given statement.
${\left( {3x + 7} \right)^2} - 84x = {\left( {3x - 7} \right)^2}$ is the given statement to be proved.
LHS$ = {\left( {3x + 7} \right)^2} - 84x$
Using identity (1) here, we find that $a = 3x,b = 7$
Substituting it in the LHS of (1) and using the identity, we get
\[
LHS = {\left( {3x + 7} \right)^2} - 4\left( {3x} \right)\left( 7 \right) \\
= {\left( {3x + 7} \right)^2} - 84x \\
= {\left( {3x - 7} \right)^2} \\
= RHS \\
\]
Hence, ${\left( {3x + 7} \right)^2} - 84x = {\left( {3x - 7} \right)^2}$is proved.
(ii)${\left( {9p - 5q} \right)^2} + 180pq = {\left( {9p + 5q} \right)^2}$
We know that, ${\left( {a - b} \right)^2} + 4ab = {\left( {a + b} \right)^2}$ …(2)
Let us prove this identity first.
LHS=${\left( {a - b} \right)^2} + 4ab$
Expand the brackets using the identity ${\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab$
$
= {a^2} + {b^2} - 2ab + 4ab \\
= {a^2} + {b^2} + 2ab \\
$
We know that${\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab$. Using this in the previous step,
$ = {\left( {a + b} \right)^2}$
=RHS
Hence, the identity is proved. Now let us use this to prove the given statement.
${\left( {9p - 5q} \right)^2} + 180pq = {\left( {9p + 5q} \right)^2}$ is the given statement to be proved.
LHS$ = {\left( {9p - 5q} \right)^2} + 180pq$
Using identity (2) here, we find that $a = 9p,b = 5q$
Substituting it in the LHS of (2) and using the identity, we get
\[
LHS = {\left( {9p - 5q} \right)^2} + 4\left( {9p} \right)\left( {5q} \right) \\
= {\left( {9p - 5q} \right)^2} + 180pq \\
= {\left( {9p + 5q} \right)^2} \\
= RHS \\
\]
Hence, ${\left( {9p - 5q} \right)^2} + 180pq = {\left( {9p + 5q} \right)^2}$is proved.
(iii)${\left( {\dfrac{4}{3}m - \dfrac{3}{4}n} \right)^2} + 2mn = \dfrac{{16}}{9}{m^2} + \dfrac{9}{{16}}{n^2}$
We know that, ${\left( {a - b} \right)^2} + 4ab = {\left( {a + b} \right)^2}$
We have already proved this identity.
Using this identity here, we find that $a = \dfrac{4}{3}m,b = \dfrac{3}{4}n$
Substituting it in the LHS of (2) and using the identity, we get
\[
LHS = {\left( {\dfrac{4}{3}m - \dfrac{3}{4}n} \right)^2} + 4\left( {\dfrac{4}{3}m} \right)\left( {\dfrac{3}{4}n} \right) \\
= {\left( {\dfrac{4}{3}m - \dfrac{3}{4}n} \right)^2} + 4mn \\
= {\left( {\dfrac{4}{3}m + \dfrac{3}{4}n} \right)^2} \\
= \dfrac{{16}}{9}{m^2} + \dfrac{9}{{16}}{n^2} + 2\left( {\dfrac{4}{3}m} \right)\left( {\dfrac{3}{4}n} \right) \\
= \dfrac{{16}}{9}{m^2} + \dfrac{9}{{16}}{n^2} + 2mn \\
\]
Now we have proved ${\left( {\dfrac{4}{3}m - \dfrac{3}{4}n} \right)^2} + 4mn = \dfrac{{16}}{9}{m^2} + \dfrac{9}{{16}}{n^2} + 2mn$
Rearranging it we get,
${\left( {\dfrac{4}{3}m - \dfrac{3}{4}n} \right)^2} + 2mn = \dfrac{{16}}{9}{m^2} + \dfrac{9}{{16}}{n^2}$
Hence, ${\left( {9p - 5q} \right)^2} + 180pq = {\left( {9p + 5q} \right)^2}$is proved.
(iv)${\left( {4pq + 3q} \right)^2} - {\left( {4pq - 3q} \right)^2} = 48p{q^2}$
From identity (2), by rearranging it we get,
${\left( {a + b} \right)^2} - {\left( {a - b} \right)^2} = 4ab$ …(3)
Using identity (3) here, we find that $a = 4pq,b = 3q$
Substituting it in the LHS of (3) and using the identity, we get
$
{\left( {a + b} \right)^2} - {\left( {a - b} \right)^2} = {\left( {4pq + 3q} \right)^2} - {\left( {4pq - 3q} \right)^2} \\
= 4\left( {4pq} \right)\left( {3q} \right) \\
= 48p{q^2} \\
= RHS \\
$
Hence,${\left( {4pq + 3q} \right)^2} - {\left( {4pq - 3q} \right)^2} = 48p{q^2}$is proved.
(v)$\left( {a - b} \right)\left( {a + b} \right) + \left( {b - c} \right)\left( {b + c} \right) + \left( {c - a} \right)\left( {c + a} \right) = 0$
We know that, $\left( {a + b} \right)\left( {a - b} \right) = {a^2} - {b^2}$ …(4)
Using this identity, we need to open the brackets for the LHS of the given statement.
$
LHS = \left( {a - b} \right)\left( {a + b} \right) + \left( {b - c} \right)\left( {b + c} \right) + \left( {c - a} \right)\left( {c + a} \right) \\
= {a^2} - {b^2} + {b^2} - {c^2} + {c^2} - {a^2} \\
$
After cancelling the terms, we get
$LHS = 0 = RHS$
Hence,$\left( {a - b} \right)\left( {a + b} \right) + \left( {b - c} \right)\left( {b + c} \right) + \left( {c - a} \right)\left( {c + a} \right) = 0$is proved.
Note: These statements can also be proved without the use of the identities (1), (2) and (3) by just expanding the brackets and by simplifying it. But it would have been a little lengthier process than by using the identities.
Recently Updated Pages
If abc are pthqth and rth terms of a GP then left fraccb class 11 maths JEE_Main

If the pthqth and rth term of a GP are abc respectively class 11 maths JEE_Main

If abcdare any four consecutive coefficients of any class 11 maths JEE_Main

If A1A2 are the two AMs between two numbers a and b class 11 maths JEE_Main

If pthqthrth and sth terms of an AP be in GP then p class 11 maths JEE_Main

One root of the equation cos x x + frac12 0 lies in class 11 maths JEE_Main

Trending doubts
What was the capital of Kanishka A Mathura B Purushapura class 7 social studies CBSE

Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Tropic of Cancer passes through how many states? Name them.

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

Name the Largest and the Smallest Cell in the Human Body ?
