
Show that: \[\cos \left( {{{35}^ \circ } + A} \right) \cdot \cos \left( {{{35}^ \circ } - B} \right) + \sin \left( {{{35}^ \circ } + A} \right) \cdot \sin \left( {{{35}^ \circ } - B} \right) = \cos \left( {A + B} \right)\].
Answer
522.9k+ views
Hint: Here in this question, we have to prove the given trigonometric function by showing the left hand side is equal to the right hand side (i.e., \[L.H.S = R.H.S\]). To solve this, we have to consider L.H.S and simplify by using a formula of cosine and sum identity and by further simplification we get the required solution.
Complete step by step solution:
A function of an angle expressed as the ratio of two of the sides of a right triangle that contains that angle; the sine, cosine, tangent, cotangent, secant, or cosecant known as trigonometric function Also called circular function.
Consider the given question:
show that
\[ \Rightarrow \,\,\cos \left( {{{35}^ \circ } + A} \right) \cdot \cos \left( {{{35}^ \circ } - B} \right) + \sin \left( {{{35}^ \circ } + A} \right) \cdot \sin \left( {{{35}^ \circ } - B} \right) = \cos \left( {A + B} \right)\]--------(1)
Consider Left hand side of equation (1)
\[ \Rightarrow \,\,L.H.S\]
\[ \Rightarrow \,\,\cos \left( {{{35}^ \circ } + A} \right) \cdot \cos \left( {{{35}^ \circ } - B} \right) + \sin \left( {{{35}^ \circ } + A} \right) \cdot \sin \left( {{{35}^ \circ } - B} \right)\]--------(3)
Now, expand each term using a trigonometric formula of sum and difference identity i.e.,
Sine sum identity: \[\sin \left( {A + B} \right) = \sin A \cdot \cos B + \cos A \cdot \sin B\]
Sine difference identity: \[\sin \left( {A - B} \right) = \sin A \cdot \cos B - \cos A \cdot \sin B\]
Cosine sum identity: \[\cos \left( {A + B} \right) = \cos A \cdot \cos B - \sin A \cdot \sin B\]
Cosine difference identity: \[\cos \left( {A - B} \right) = \cos A \cdot \cos B + \sin A \cdot \sin B\]
On substituting the formulas the equation (2) becomes
\[ \Rightarrow \,\,\left( {\cos \left( {{{35}^ \circ }} \right) \cdot \cos \left( A \right) - \sin \left( {{{35}^ \circ }} \right) \cdot \sin \left( A \right)} \right) \cdot \left( {\cos \left( {{{35}^ \circ }} \right) \cdot \cos \left( B \right) + \sin \left( {{{35}^ \circ }} \right) \cdot \sin \left( B \right)} \right)\] \[ + \left( {\sin \left( {{{35}^ \circ }} \right) \cdot \cos \left( A \right) + \cos \left( {{{35}^ \circ }} \right) \cdot \sin \left( A \right)} \right) \cdot \left( {\sin \left( {{{35}^ \circ }} \right) \cdot \cos \left( B \right) - \cos \left( {{{35}^ \circ }} \right) \cdot \sin \left( B \right)} \right)\]
On multiplication, we have
\[ \Rightarrow \,\,{\cos ^2}\left( {{{35}^ \circ }} \right) \cdot \cos \left( A \right)\cos \left( B \right) + \cos \left( {{{35}^ \circ }} \right)\sin \left( {{{35}^ \circ }} \right) \cdot \cos \left( A \right)\sin \left( B \right)\] \[ - \cos \left( {{{35}^ \circ }} \right)\sin \left( {{{35}^ \circ }} \right) \cdot \sin \left( A \right)\cos \left( B \right) - {\sin ^2}\left( {{{35}^ \circ }} \right) \cdot \sin \left( A \right)\sin \left( B \right)\] \[ + \sin {\left( {{{35}^ \circ }} \right)^2} \cdot \cos \left( A \right)\cos \left( B \right) - \sin \left( {{{35}^ \circ }} \right)\cos \left( {{{35}^ \circ }} \right) \cdot \cos \left( A \right)\sin \left( B \right)\] \[ + \cos \left( {{{35}^ \circ }} \right)\sin \left( {{{35}^ \circ }} \right) \cdot \sin \left( A \right)\cos \left( B \right) - {\cos ^2}\left( {{{35}^ \circ }} \right) \cdot \sin \left( A \right)\sin \left( B \right)\]
on simplification and rearranging, we have
\[ \Rightarrow \,\,{\cos ^2}\left( {{{35}^ \circ }} \right) \cdot \cos \left( A \right)\cos \left( B \right) - {\cos ^2}\left( {{{35}^ \circ }} \right) \cdot \sin \left( A \right)\sin \left( B \right)\] \[ + \sin {\left( {{{35}^ \circ }} \right)^2} \cdot \cos \left( A \right)\cos \left( B \right) - {\sin ^2}\left( {{{35}^ \circ }} \right) \cdot \sin \left( A \right)\sin \left( B \right)\]
Take out common terms, then
\[ \Rightarrow \,\,{\cos ^2}\left( {{{35}^ \circ }} \right) \cdot \left( {\cos \left( A \right)\cos \left( B \right) - \sin \left( A \right)\sin \left( B \right)} \right) + \sin {\left( {{{35}^ \circ }} \right)^2}\left( {\cos \left( A \right)\cos \left( B \right) - \sin \left( A \right)\sin \left( B \right)} \right)\]
\[ \Rightarrow \,\,\left( {\cos \left( A \right)\cos \left( B \right) - \sin \left( A \right)\sin \left( B \right)} \right)\left( {{{\cos }^2}\left( {{{35}^ \circ }} \right) + \sin {{\left( {{{35}^ \circ }} \right)}^2}} \right)\]
As we now the trigonometric identity i.e., \[{\cos ^2}\theta + {\sin ^2}\theta = 1\], then
\[ \Rightarrow \,\,\left( {\cos \left( A \right)\cos \left( B \right) - \sin \left( A \right)\sin \left( B \right)} \right)\left( 1 \right)\]
by using cosine sum identity, the above equation becomes
\[ \Rightarrow \,\,\cos \left( {A + B} \right)\]
\[ \Rightarrow \,\,R.H.S\]
Therefore, \[L.H.S = R.H.S\]
\[\cos \left( {{{35}^ \circ } + A} \right) \cdot \cos \left( {{{35}^ \circ } - B} \right) + \sin \left( {{{35}^ \circ } + A} \right) \cdot \sin \left( {{{35}^ \circ } - B} \right) = \cos \left( {A + B} \right)\]
Hence proved.
Note:
When solving trigonometry based questions, we have to know the definitions of ratios and always remember the standard angles and formulas are useful for solving certain integration problems where a cosine and sum identity may make things much simpler to solve. Thus, in math as well as in physics, these formulae are useful to derive many important identities.
Complete step by step solution:
A function of an angle expressed as the ratio of two of the sides of a right triangle that contains that angle; the sine, cosine, tangent, cotangent, secant, or cosecant known as trigonometric function Also called circular function.
Consider the given question:
show that
\[ \Rightarrow \,\,\cos \left( {{{35}^ \circ } + A} \right) \cdot \cos \left( {{{35}^ \circ } - B} \right) + \sin \left( {{{35}^ \circ } + A} \right) \cdot \sin \left( {{{35}^ \circ } - B} \right) = \cos \left( {A + B} \right)\]--------(1)
Consider Left hand side of equation (1)
\[ \Rightarrow \,\,L.H.S\]
\[ \Rightarrow \,\,\cos \left( {{{35}^ \circ } + A} \right) \cdot \cos \left( {{{35}^ \circ } - B} \right) + \sin \left( {{{35}^ \circ } + A} \right) \cdot \sin \left( {{{35}^ \circ } - B} \right)\]--------(3)
Now, expand each term using a trigonometric formula of sum and difference identity i.e.,
Sine sum identity: \[\sin \left( {A + B} \right) = \sin A \cdot \cos B + \cos A \cdot \sin B\]
Sine difference identity: \[\sin \left( {A - B} \right) = \sin A \cdot \cos B - \cos A \cdot \sin B\]
Cosine sum identity: \[\cos \left( {A + B} \right) = \cos A \cdot \cos B - \sin A \cdot \sin B\]
Cosine difference identity: \[\cos \left( {A - B} \right) = \cos A \cdot \cos B + \sin A \cdot \sin B\]
On substituting the formulas the equation (2) becomes
\[ \Rightarrow \,\,\left( {\cos \left( {{{35}^ \circ }} \right) \cdot \cos \left( A \right) - \sin \left( {{{35}^ \circ }} \right) \cdot \sin \left( A \right)} \right) \cdot \left( {\cos \left( {{{35}^ \circ }} \right) \cdot \cos \left( B \right) + \sin \left( {{{35}^ \circ }} \right) \cdot \sin \left( B \right)} \right)\] \[ + \left( {\sin \left( {{{35}^ \circ }} \right) \cdot \cos \left( A \right) + \cos \left( {{{35}^ \circ }} \right) \cdot \sin \left( A \right)} \right) \cdot \left( {\sin \left( {{{35}^ \circ }} \right) \cdot \cos \left( B \right) - \cos \left( {{{35}^ \circ }} \right) \cdot \sin \left( B \right)} \right)\]
On multiplication, we have
\[ \Rightarrow \,\,{\cos ^2}\left( {{{35}^ \circ }} \right) \cdot \cos \left( A \right)\cos \left( B \right) + \cos \left( {{{35}^ \circ }} \right)\sin \left( {{{35}^ \circ }} \right) \cdot \cos \left( A \right)\sin \left( B \right)\] \[ - \cos \left( {{{35}^ \circ }} \right)\sin \left( {{{35}^ \circ }} \right) \cdot \sin \left( A \right)\cos \left( B \right) - {\sin ^2}\left( {{{35}^ \circ }} \right) \cdot \sin \left( A \right)\sin \left( B \right)\] \[ + \sin {\left( {{{35}^ \circ }} \right)^2} \cdot \cos \left( A \right)\cos \left( B \right) - \sin \left( {{{35}^ \circ }} \right)\cos \left( {{{35}^ \circ }} \right) \cdot \cos \left( A \right)\sin \left( B \right)\] \[ + \cos \left( {{{35}^ \circ }} \right)\sin \left( {{{35}^ \circ }} \right) \cdot \sin \left( A \right)\cos \left( B \right) - {\cos ^2}\left( {{{35}^ \circ }} \right) \cdot \sin \left( A \right)\sin \left( B \right)\]
on simplification and rearranging, we have
\[ \Rightarrow \,\,{\cos ^2}\left( {{{35}^ \circ }} \right) \cdot \cos \left( A \right)\cos \left( B \right) - {\cos ^2}\left( {{{35}^ \circ }} \right) \cdot \sin \left( A \right)\sin \left( B \right)\] \[ + \sin {\left( {{{35}^ \circ }} \right)^2} \cdot \cos \left( A \right)\cos \left( B \right) - {\sin ^2}\left( {{{35}^ \circ }} \right) \cdot \sin \left( A \right)\sin \left( B \right)\]
Take out common terms, then
\[ \Rightarrow \,\,{\cos ^2}\left( {{{35}^ \circ }} \right) \cdot \left( {\cos \left( A \right)\cos \left( B \right) - \sin \left( A \right)\sin \left( B \right)} \right) + \sin {\left( {{{35}^ \circ }} \right)^2}\left( {\cos \left( A \right)\cos \left( B \right) - \sin \left( A \right)\sin \left( B \right)} \right)\]
\[ \Rightarrow \,\,\left( {\cos \left( A \right)\cos \left( B \right) - \sin \left( A \right)\sin \left( B \right)} \right)\left( {{{\cos }^2}\left( {{{35}^ \circ }} \right) + \sin {{\left( {{{35}^ \circ }} \right)}^2}} \right)\]
As we now the trigonometric identity i.e., \[{\cos ^2}\theta + {\sin ^2}\theta = 1\], then
\[ \Rightarrow \,\,\left( {\cos \left( A \right)\cos \left( B \right) - \sin \left( A \right)\sin \left( B \right)} \right)\left( 1 \right)\]
by using cosine sum identity, the above equation becomes
\[ \Rightarrow \,\,\cos \left( {A + B} \right)\]
\[ \Rightarrow \,\,R.H.S\]
Therefore, \[L.H.S = R.H.S\]
\[\cos \left( {{{35}^ \circ } + A} \right) \cdot \cos \left( {{{35}^ \circ } - B} \right) + \sin \left( {{{35}^ \circ } + A} \right) \cdot \sin \left( {{{35}^ \circ } - B} \right) = \cos \left( {A + B} \right)\]
Hence proved.
Note:
When solving trigonometry based questions, we have to know the definitions of ratios and always remember the standard angles and formulas are useful for solving certain integration problems where a cosine and sum identity may make things much simpler to solve. Thus, in math as well as in physics, these formulae are useful to derive many important identities.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

