
Show that:
$\cos 24^\circ + \cos 55^\circ + \cos 125^\circ + \cos 204^\circ + \cos 300^\circ = \dfrac{1}{2}$
Answer
585.9k+ views
Hint: First take the left- hand side of the equation and try to approach the right- hand side of the equation. Express the cosine angles in another form using the sign change rule of trigonometry and then eliminate the terms. Substitute the value of the obtained trigonometric ratio to get the desired result.
Complete step by step answer:
Consider the given equation:
$\cos 24^\circ + \cos 55^\circ + \cos 125^\circ + \cos 204^\circ + \cos 300^\circ = \dfrac{1}{2}$
The goal of the problem is to verify the above equation.
We first take the left- hand side of the equation and try to approach the right- hand side of the equation.
The left- hand side of the equation is given as:
Left- hand side$ = \cos 24^\circ + \cos 55^\circ + \cos 125^\circ + \cos 204^\circ + \cos 300^\circ $
We know that the change in the cosine is given as:
$\cos \left( {180 + \theta } \right) = - \cos \theta $ and$\cos \left( {180 - \theta } \right) = - \cos \theta $
We can also express the left- hand side as:
Left- hand side$ = \cos 24^\circ + \cos \left( {180^\circ - 125^\circ } \right) + \cos 125^\circ + \cos \left( {180^\circ + 24^\circ } \right) + \cos 300^\circ $
Here, we know that the value:
\[\cos \left( {180^\circ - 125^\circ } \right) = - 125^\circ \]and$\cos \left( {180^\circ + 24^\circ } \right) = - \cos 24^\circ $
Substitute these values in the left- hand side of the equation, then the left- hand side becomes:
Left- hand side$ = \cos 24^\circ + \left( { - \cos 125^\circ } \right) + \cos 125^\circ + \left( { - \cos 24^\circ } \right) + \cos 300^\circ $
Left- hand side$ = \cos 24^\circ - \cos 125^\circ + \cos 125^\circ - \cos 24^\circ + \cos 300^\circ $
Left- hand side$ = \cos 300^\circ $
Now, we can express the given trigonometric term in expanded form:
Left- hand side$ = \cos \left( {270 + 30} \right)^\circ $
Left- hand side$ = \sin 30^\circ $
We know that:
$\sin 30^\circ = \dfrac{1}{2}$
Then the left- hand side is given as:
Left- hand side$ = \dfrac{1}{2}$
Left- hand side$ = $ Right- hand side
We have proved the left- hand side of the equation equal to the right- hand side of the equation.
So, the left- hand side of the equation is equal to the right- hand side of the equation.
Therefore, the required result is proved.
Note: While changing the sign of the angle, note that when we are using the change in terms of $90^\circ $ and$270^\circ $, then there is an interchange in trigonometric terms.
Interchanges in the trigonometric terms are given as:
${\text{cos}} \Leftrightarrow {\text{sin}}$
${\text{tan}} \Leftrightarrow \cot $
$\sec \Leftrightarrow {\text{cosec}}$
Therefore, the interchange$\cos \left( {270 + 30} \right)^\circ = \sin 30^\circ $.
Complete step by step answer:
Consider the given equation:
$\cos 24^\circ + \cos 55^\circ + \cos 125^\circ + \cos 204^\circ + \cos 300^\circ = \dfrac{1}{2}$
The goal of the problem is to verify the above equation.
We first take the left- hand side of the equation and try to approach the right- hand side of the equation.
The left- hand side of the equation is given as:
Left- hand side$ = \cos 24^\circ + \cos 55^\circ + \cos 125^\circ + \cos 204^\circ + \cos 300^\circ $
We know that the change in the cosine is given as:
$\cos \left( {180 + \theta } \right) = - \cos \theta $ and$\cos \left( {180 - \theta } \right) = - \cos \theta $
We can also express the left- hand side as:
Left- hand side$ = \cos 24^\circ + \cos \left( {180^\circ - 125^\circ } \right) + \cos 125^\circ + \cos \left( {180^\circ + 24^\circ } \right) + \cos 300^\circ $
Here, we know that the value:
\[\cos \left( {180^\circ - 125^\circ } \right) = - 125^\circ \]and$\cos \left( {180^\circ + 24^\circ } \right) = - \cos 24^\circ $
Substitute these values in the left- hand side of the equation, then the left- hand side becomes:
Left- hand side$ = \cos 24^\circ + \left( { - \cos 125^\circ } \right) + \cos 125^\circ + \left( { - \cos 24^\circ } \right) + \cos 300^\circ $
Left- hand side$ = \cos 24^\circ - \cos 125^\circ + \cos 125^\circ - \cos 24^\circ + \cos 300^\circ $
Left- hand side$ = \cos 300^\circ $
Now, we can express the given trigonometric term in expanded form:
Left- hand side$ = \cos \left( {270 + 30} \right)^\circ $
Left- hand side$ = \sin 30^\circ $
We know that:
$\sin 30^\circ = \dfrac{1}{2}$
Then the left- hand side is given as:
Left- hand side$ = \dfrac{1}{2}$
Left- hand side$ = $ Right- hand side
We have proved the left- hand side of the equation equal to the right- hand side of the equation.
So, the left- hand side of the equation is equal to the right- hand side of the equation.
Therefore, the required result is proved.
Note: While changing the sign of the angle, note that when we are using the change in terms of $90^\circ $ and$270^\circ $, then there is an interchange in trigonometric terms.
Interchanges in the trigonometric terms are given as:
${\text{cos}} \Leftrightarrow {\text{sin}}$
${\text{tan}} \Leftrightarrow \cot $
$\sec \Leftrightarrow {\text{cosec}}$
Therefore, the interchange$\cos \left( {270 + 30} \right)^\circ = \sin 30^\circ $.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

