
Show that any odd positive integer is of the form \[4q + 1\] or \[4q + 3\], where \[q\] is some integer.
Answer
409.8k+ views
Hint: In this question we are going to prove any odd integer is of the form \[4q + 1\] or \[4q + 3\]. To prove this we are going to use “Euclid’s Division Lemma”. Euclid’s Division Lemma states that, given positive integers \[a\] and \[b\], there exist unique integers \[q\] and \[r\] satisfying \[a = bq + r{\text{,}}0 \leqslant r < b\].
Complete step-by-step solution:
Here, we take \[b = 4\] because as per our question we want to prove is of the form \[4q + 1\] or \[4q + 3\],
Let \[a\] be any positive integer and \[b = 4\].
Here, the integer is \[4\]so we consider \[b = 4\].
As per Euclid’s Division Lemma,
\[a = 4q + r\], for some integer \[q \geqslant 0\] and \[r = 0{\text{,}}1,2,3\] because \[0 \leqslant r < 4\].
Now substituting the value of \[r\], we get,
If \[r = 0\], then \[a = 4q\]
Similarly, for \[r = 1,2\] and \[3\], the value of \[a\] is, \[a = 4q + 1\], \[a = 4q + 2\] and \[a = 4q + 3\] respectively.
If \[a = 4q\] and \[a = 4q + 2\] then \[a\] is an even number and divisible by \[2\]. A positive integer can be either even or odd.
Therefore, any positive odd integer is of the form \[4q + 1\] or \[4q + 3\], where q is some integer.
Note: Euclid’s division algorithm is a technique to compute the Highest Common Factor (HCF) of two given positive integers. HCF of two positive integers \[a\] and \[b\] is the largest positive integer \[d\] that divides both \[a\] and \[b\]. Euclid’s division algorithm is based on Euclid’s Division Lemma.
Euclid’s Division Lemma has many applications related to divisibility of integers. It can be used to find the HCF of two numbers. The process of finding the HCF of two numbers using Euclid’s Division Lemma is called Euclid’s Division Algorithm.
Complete step-by-step solution:
Here, we take \[b = 4\] because as per our question we want to prove is of the form \[4q + 1\] or \[4q + 3\],
Let \[a\] be any positive integer and \[b = 4\].
Here, the integer is \[4\]so we consider \[b = 4\].
As per Euclid’s Division Lemma,
\[a = 4q + r\], for some integer \[q \geqslant 0\] and \[r = 0{\text{,}}1,2,3\] because \[0 \leqslant r < 4\].
Now substituting the value of \[r\], we get,
If \[r = 0\], then \[a = 4q\]
Similarly, for \[r = 1,2\] and \[3\], the value of \[a\] is, \[a = 4q + 1\], \[a = 4q + 2\] and \[a = 4q + 3\] respectively.
If \[a = 4q\] and \[a = 4q + 2\] then \[a\] is an even number and divisible by \[2\]. A positive integer can be either even or odd.
Therefore, any positive odd integer is of the form \[4q + 1\] or \[4q + 3\], where q is some integer.
Note: Euclid’s division algorithm is a technique to compute the Highest Common Factor (HCF) of two given positive integers. HCF of two positive integers \[a\] and \[b\] is the largest positive integer \[d\] that divides both \[a\] and \[b\]. Euclid’s division algorithm is based on Euclid’s Division Lemma.
Euclid’s Division Lemma has many applications related to divisibility of integers. It can be used to find the HCF of two numbers. The process of finding the HCF of two numbers using Euclid’s Division Lemma is called Euclid’s Division Algorithm.
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success

Express the following as a fraction and simplify a class 7 maths CBSE

The length and width of a rectangle are in ratio of class 7 maths CBSE

The ratio of the income to the expenditure of a family class 7 maths CBSE

How do you write 025 million in scientific notatio class 7 maths CBSE

How do you convert 295 meters per second to kilometers class 7 maths CBSE

Trending doubts
When people say No pun intended what does that mea class 8 english CBSE

In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE

How many ounces are in 500 mL class 8 maths CBSE

Which king started the organization of the Kumbh fair class 8 social science CBSE

Advantages and disadvantages of science

What is BLO What is the full form of BLO class 8 social science CBSE
