
Show that $a{{\cos }^{2}}\dfrac{A}{2}+b{{\cos }^{2}}\dfrac{B}{2}+c{{\cos }^{2}}\dfrac{C}{2}=s+\dfrac{\Delta }{R}$
Answer
522.3k+ views
Hint: In this problem we need to show that $a{{\cos }^{2}}\dfrac{A}{2}+b{{\cos }^{2}}\dfrac{B}{2}+c{{\cos }^{2}}\dfrac{C}{2}=s+\dfrac{\Delta }{R}$. First, we will consider the LHS part of the given equation. In LHS we will consider the term ${{\cos }^{2}}\dfrac{A}{2}$. From the trigonometric formula $\cos 2A=2{{\cos }^{2}}A-1$, we will write ${{\cos }^{2}}\dfrac{A}{2}=\dfrac{1+\cos A}{2}$. Similarly, we can write this for ${{\cos }^{2}}\dfrac{B}{2}$, ${{\cos }^{2}}\dfrac{C}{2}$ and substitute those values in the given equation. Here we will apply the formula for the properties of the triangle which is $s=\dfrac{a+b+c}{2}$ and from sine rule $\dfrac{a}{\sin A}=\dfrac{b}{\sin B}=\dfrac{c}{\sin C}=2R$ we will use $a=2R\sin A$, $b=2R\sin B$, $c=2R\sin C$ in the obtained equation. Now we will use $\sin 2A=2\sin A\cos A$ in the equation. Now we will get $\sin 2A+\sin 2B+\sin 2C$ in the equation and we will use the value of $\sin 2A+\sin 2B+\sin 2C$ as $4\sin A\sin B\sin C$ and then we will use the formula $\Delta =2{{R}^{2}}\sin A\sin B\sin C$ and simplify the equation to get the required result.
Complete step by step solution:
Given equation, $a{{\cos }^{2}}\dfrac{A}{2}+b{{\cos }^{2}}\dfrac{B}{2}+c{{\cos }^{2}}\dfrac{C}{2}=s+\dfrac{\Delta }{R}$.
Considering the LHS part of the above equation, then we will get
$LHS=a{{\cos }^{2}}\dfrac{A}{2}+b{{\cos }^{2}}\dfrac{B}{2}+c{{\cos }^{2}}\dfrac{C}{2}$
From the trigonometric formula $\cos 2A=2{{\cos }^{2}}A-1$, we can write ${{\cos }^{2}}\dfrac{A}{2}=\dfrac{1+\cos A}{2}$. Using this formula in the above equation, then we will get
$LHS=a\left[ \dfrac{1+\cos A}{2} \right]+b\left[ \dfrac{1+\cos B}{2} \right]+c\left[ \dfrac{1+\cos C}{2} \right]$
Simplifying the above equation by using mathematical operations, then we will have
$\begin{align}
& LHS=\dfrac{a}{2}+\dfrac{a\cos A}{2}+\dfrac{b}{2}+\dfrac{b\cos B}{2}+\dfrac{c}{2}+\dfrac{c\cos C}{2} \\
& \Rightarrow LHS=\dfrac{a+b+c}{2}+\dfrac{1}{2}\left[ a\cos A+b\cos B+c\cos C \right] \\
\end{align}$
Using the formula $s=\dfrac{a+b+c}{2}$ and from sine rule $\dfrac{a}{\sin A}=\dfrac{b}{\sin B}=\dfrac{c}{\sin C}=2R$ using the values $a=2R\sin A$, $b=2R\sin B$, $c=2R\sin C$ in the above equation, then we will get
$LHS=s+\dfrac{1}{2}\left[ 2R\sin A\cos A+2R\sin B\cos B+2R\sin C\cos C \right]$
Taking $R$ as common from the above equation and using the trigonometric formula $\sin 2A=2\sin A\cos A$ in the above equation, then we will have
$LHS=s+\dfrac{R}{2}\left[ \sin 2A+\sin 2B+\sin 2C \right]$
We have the trigonometric formula $\sin 2A+\sin 2B+\sin 2C=4\sin A\sin B\sin C$ in the above equation, then we will get
$LHS=s+\dfrac{R}{2}\left( 4\sin A\sin B\sin C \right)$
Divide and multiply the term $4\sin A\sin B\sin C$ with $R$, then we will get
$LHS=s+\dfrac{2{{R}^{2}}\sin A\sin B\sin C}{R}$
We have the trigonometric formula $\Delta =2{{R}^{2}}\sin A\sin B\sin C$. Substituting this formula in the above equation, then we will get
$\begin{align}
& LHS=s+\dfrac{\Delta }{R} \\
& \therefore LHS=RHS \\
\end{align}$
Note: In trigonometry this kind of problem very often. So, we should be clear about all the formulas and properties of the triangle to use them at a suitable step. Some of the properties of triangle which are used in this kind of problems is given by
$\sin \dfrac{A}{2}=\sqrt{\dfrac{\left( s-b \right)\left( s-c \right)}{bc}}$, $\cos \dfrac{A}{2}=\sqrt{\dfrac{s\left( s-a \right)}{bc}}$, $\tan \dfrac{A}{2}=\sqrt{\dfrac{\left( s-b \right)\left( s-c \right)}{s\left( s-a \right)}}$. We can use these formulas for remaining angles with a minor change.
Complete step by step solution:
Given equation, $a{{\cos }^{2}}\dfrac{A}{2}+b{{\cos }^{2}}\dfrac{B}{2}+c{{\cos }^{2}}\dfrac{C}{2}=s+\dfrac{\Delta }{R}$.
Considering the LHS part of the above equation, then we will get
$LHS=a{{\cos }^{2}}\dfrac{A}{2}+b{{\cos }^{2}}\dfrac{B}{2}+c{{\cos }^{2}}\dfrac{C}{2}$
From the trigonometric formula $\cos 2A=2{{\cos }^{2}}A-1$, we can write ${{\cos }^{2}}\dfrac{A}{2}=\dfrac{1+\cos A}{2}$. Using this formula in the above equation, then we will get
$LHS=a\left[ \dfrac{1+\cos A}{2} \right]+b\left[ \dfrac{1+\cos B}{2} \right]+c\left[ \dfrac{1+\cos C}{2} \right]$
Simplifying the above equation by using mathematical operations, then we will have
$\begin{align}
& LHS=\dfrac{a}{2}+\dfrac{a\cos A}{2}+\dfrac{b}{2}+\dfrac{b\cos B}{2}+\dfrac{c}{2}+\dfrac{c\cos C}{2} \\
& \Rightarrow LHS=\dfrac{a+b+c}{2}+\dfrac{1}{2}\left[ a\cos A+b\cos B+c\cos C \right] \\
\end{align}$
Using the formula $s=\dfrac{a+b+c}{2}$ and from sine rule $\dfrac{a}{\sin A}=\dfrac{b}{\sin B}=\dfrac{c}{\sin C}=2R$ using the values $a=2R\sin A$, $b=2R\sin B$, $c=2R\sin C$ in the above equation, then we will get
$LHS=s+\dfrac{1}{2}\left[ 2R\sin A\cos A+2R\sin B\cos B+2R\sin C\cos C \right]$
Taking $R$ as common from the above equation and using the trigonometric formula $\sin 2A=2\sin A\cos A$ in the above equation, then we will have
$LHS=s+\dfrac{R}{2}\left[ \sin 2A+\sin 2B+\sin 2C \right]$
We have the trigonometric formula $\sin 2A+\sin 2B+\sin 2C=4\sin A\sin B\sin C$ in the above equation, then we will get
$LHS=s+\dfrac{R}{2}\left( 4\sin A\sin B\sin C \right)$
Divide and multiply the term $4\sin A\sin B\sin C$ with $R$, then we will get
$LHS=s+\dfrac{2{{R}^{2}}\sin A\sin B\sin C}{R}$
We have the trigonometric formula $\Delta =2{{R}^{2}}\sin A\sin B\sin C$. Substituting this formula in the above equation, then we will get
$\begin{align}
& LHS=s+\dfrac{\Delta }{R} \\
& \therefore LHS=RHS \\
\end{align}$
Note: In trigonometry this kind of problem very often. So, we should be clear about all the formulas and properties of the triangle to use them at a suitable step. Some of the properties of triangle which are used in this kind of problems is given by
$\sin \dfrac{A}{2}=\sqrt{\dfrac{\left( s-b \right)\left( s-c \right)}{bc}}$, $\cos \dfrac{A}{2}=\sqrt{\dfrac{s\left( s-a \right)}{bc}}$, $\tan \dfrac{A}{2}=\sqrt{\dfrac{\left( s-b \right)\left( s-c \right)}{s\left( s-a \right)}}$. We can use these formulas for remaining angles with a minor change.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

