
Show $ \dfrac{d}{{dx}}\left( {\cot x} \right) = - {\left( {\csc x} \right)^2} $
Answer
524.4k+ views
Hint: In order to determine the show the above given result , rewrite the $ \cot x $ as $ \dfrac{{\cos x}}{{\sin x}} $ and apply the quotient rule by considering $ f\left( x \right) = \cos x $ and $ g\left( x \right) = \sin x $ . Later use the identity of trigonometry $ {\sin ^2}x + {\cos ^2}x = 1 $ to simplify the result and obtain the required answer.
Complete step-by-step answer:
We are given a result as $ \dfrac{d}{{dx}}\left( {\cot x} \right) = - {\left( {\csc x} \right)^2} $ and we have to show that this result is true.
To Show the result is true we will first take the LHS part of the equation and solve it to make it equal to the RHS par of the equation.
Taking Left-Hand Side of the equation
$ = \dfrac{d}{{dx}}\left( {\cot x} \right) $
Rewriting the above using the property of trigonometry $ \cot x = \dfrac{{\cos x}}{{\sin x}} $
$ = \dfrac{d}{{dx}}\left( {\dfrac{{\cos x}}{{\sin x}}} \right) $
Now applying the quotient rule $ \dfrac{d}{{dx}}\left( {\dfrac{{f\left( x \right)}}{{g\left( x \right)}}} \right) = \dfrac{{\dfrac{d}{{dx}}\left( {f\left( x \right)} \right) \times g\left( x \right) - f\left( x \right) \times \dfrac{d}{{dx}}\left( {g\left( x \right)} \right)}}{{{{\left( {g\left( x \right)} \right)}^2}}} $ by considering $ f\left( x \right) = \cos x $ and $ g\left( x \right) = \sin x $
$ = \dfrac{d}{{dx}}\left( {\dfrac{{\cos x}}{{\sin x}}} \right) = \dfrac{{\dfrac{d}{{dx}}\left( {\cos x} \right) \times \sin x - \cos x \times \dfrac{d}{{dx}}\left( {\sin x} \right)}}{{{{\left( {\sin x} \right)}^2}}} $
Using the rule of derivative $ \dfrac{d}{{dx}}\left( {\sin x} \right) = \cos x $ and $ \dfrac{d}{{dx}}\left( {\cos x} \right) = - \sin x $ . Rewriting the above we get
$
= \dfrac{{\left( { - \sin x} \right) \times \sin x - \cos x \times \left( {\cos x} \right)}}{{{{\sin }^2}x}} \\
= \dfrac{{ - {{\sin }^2}x - {{\cos }^2}x}}{{{{\sin }^2}x}} \\
= \dfrac{{ - \left( {{{\sin }^2}x + {{\cos }^2}x} \right)}}{{{{\sin }^2}x}} \;
$
Now using the identity of trigonometry $ {\sin ^2}x + {\cos ^2}x = 1 $ to rewrite the expression above , we get
$ = \dfrac{{ - 1}}{{{{\sin }^2}x}} $
$ = - {\csc ^2}x $
or
$ \therefore \dfrac{d}{{dx}}\left( {\cot x} \right) = - {\left( {\csc x} \right)^2} $
Therefore, we have successfully verified the result $ \dfrac{d}{{dx}}\left( {\cot x} \right) = - {\left( {\csc x} \right)^2} $ .
Note: 1. Carefully identify the functions $ f\left( x \right),g\left( x \right) $ with proper sign .
2. Avoid any jump of step in solving such types of questions as this will increase the chance of error in the solution.
3. Quotient rule is only applicable when both numerator and denominator both are some functions in variable $ x $ .
Complete step-by-step answer:
We are given a result as $ \dfrac{d}{{dx}}\left( {\cot x} \right) = - {\left( {\csc x} \right)^2} $ and we have to show that this result is true.
To Show the result is true we will first take the LHS part of the equation and solve it to make it equal to the RHS par of the equation.
Taking Left-Hand Side of the equation
$ = \dfrac{d}{{dx}}\left( {\cot x} \right) $
Rewriting the above using the property of trigonometry $ \cot x = \dfrac{{\cos x}}{{\sin x}} $
$ = \dfrac{d}{{dx}}\left( {\dfrac{{\cos x}}{{\sin x}}} \right) $
Now applying the quotient rule $ \dfrac{d}{{dx}}\left( {\dfrac{{f\left( x \right)}}{{g\left( x \right)}}} \right) = \dfrac{{\dfrac{d}{{dx}}\left( {f\left( x \right)} \right) \times g\left( x \right) - f\left( x \right) \times \dfrac{d}{{dx}}\left( {g\left( x \right)} \right)}}{{{{\left( {g\left( x \right)} \right)}^2}}} $ by considering $ f\left( x \right) = \cos x $ and $ g\left( x \right) = \sin x $
$ = \dfrac{d}{{dx}}\left( {\dfrac{{\cos x}}{{\sin x}}} \right) = \dfrac{{\dfrac{d}{{dx}}\left( {\cos x} \right) \times \sin x - \cos x \times \dfrac{d}{{dx}}\left( {\sin x} \right)}}{{{{\left( {\sin x} \right)}^2}}} $
Using the rule of derivative $ \dfrac{d}{{dx}}\left( {\sin x} \right) = \cos x $ and $ \dfrac{d}{{dx}}\left( {\cos x} \right) = - \sin x $ . Rewriting the above we get
$
= \dfrac{{\left( { - \sin x} \right) \times \sin x - \cos x \times \left( {\cos x} \right)}}{{{{\sin }^2}x}} \\
= \dfrac{{ - {{\sin }^2}x - {{\cos }^2}x}}{{{{\sin }^2}x}} \\
= \dfrac{{ - \left( {{{\sin }^2}x + {{\cos }^2}x} \right)}}{{{{\sin }^2}x}} \;
$
Now using the identity of trigonometry $ {\sin ^2}x + {\cos ^2}x = 1 $ to rewrite the expression above , we get
$ = \dfrac{{ - 1}}{{{{\sin }^2}x}} $
$ = - {\csc ^2}x $
or
$ \therefore \dfrac{d}{{dx}}\left( {\cot x} \right) = - {\left( {\csc x} \right)^2} $
Therefore, we have successfully verified the result $ \dfrac{d}{{dx}}\left( {\cot x} \right) = - {\left( {\csc x} \right)^2} $ .
Note: 1. Carefully identify the functions $ f\left( x \right),g\left( x \right) $ with proper sign .
2. Avoid any jump of step in solving such types of questions as this will increase the chance of error in the solution.
3. Quotient rule is only applicable when both numerator and denominator both are some functions in variable $ x $ .
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

Give 10 examples of unisexual and bisexual flowers

