
Show by section formula that the points (3, -2), (5, 2) and (8, 8) are collinear.
Answer
483.6k+ views
Hint:
1) The section formula gives the coordinates of a point P(x, y) which divides the line joining two points $A\left( {{x}_{1}},{{y}_{1}} \right)$ and $B\left( {{x}_{2}},{{y}_{2}} \right)$ in the ratio AP : PB = m : n, internally or externally.
2) For internal division: $P(x,y)=\left( \dfrac{m{{x}_{2}}+n{{x}_{1}}}{m+n},\dfrac{m{{y}_{2}}+n{{y}_{1}}}{m+n} \right)$ .
3) For external division: $P(x,y)=\left( \dfrac{m{{x}_{2}}-n{{x}_{1}}}{m-n},\dfrac{m{{y}_{2}}-n{{y}_{1}}}{m-n} \right)$ .
4) For three points $A\left( {{x}_{1}},{{y}_{1}} \right)$ , $B\left( {{x}_{2}},{{y}_{2}} \right)$ and $C\left( {{x}_{3}},{{y}_{3}} \right)$ to be collinear, the ratio m : n should be same in both ${{x}_{3}}=\dfrac{m{{x}_{2}}+n{{x}_{1}}}{m+n}$ and ${{y}_{3}}=\dfrac{m{{y}_{2}}+n{{y}_{1}}}{m+n}$ .
i.e. $\dfrac{m}{n}=\dfrac{{{x}_{1}}-{{x}_{3}}}{{{x}_{3}}-{{x}_{2}}}=\dfrac{{{y}_{1}}-{{y}_{3}}}{{{y}_{3}}-{{y}_{2}}}$ .
Complete step by step solution:
Let's say that the points are $A\left( {{x}_{1}},{{y}_{1}} \right)=\left( 3,-2 \right)$ , $B\left( {{x}_{2}},{{y}_{2}} \right)=\left( 5,2 \right)$ and $C\left( {{x}_{3}},{{y}_{3}} \right)=\left( 8,8 \right)$ .
We know that, using the section formula, that for the points to be collinear: $\dfrac{m}{n}=\dfrac{{{x}_{1}}-{{x}_{3}}}{{{x}_{3}}-{{x}_{2}}}=\dfrac{{{y}_{1}}-{{y}_{3}}}{{{y}_{3}}-{{y}_{2}}}$ .
Here, $\dfrac{{{x}_{1}}-{{x}_{3}}}{{{x}_{3}}-{{x}_{2}}}=\dfrac{3-8}{8-5}=\dfrac{-5}{3}$ and $\dfrac{{{y}_{1}}-{{y}_{3}}}{{{y}_{3}}-{{y}_{2}}}=\dfrac{-2-8}{8-2}=\dfrac{-10}{6}=\dfrac{-5}{3}$.
Since both the values are the same, the points are collinear. Also, a negative value of $\dfrac{m}{n}=\dfrac{-5}{3}$ suggests that the point C is outside AB and the ratio AC : BC = 5 : 3.
The position of the three points is shown below:
Note:
1) There are many ways to show that three points A, B and C are collinear (in a straight line):
2) Section formula (Ratio / Slope method).
3) Distance method: AB + BC = AC.
4) Area method: Area of Δ ABC = 0.
1) The section formula gives the coordinates of a point P(x, y) which divides the line joining two points $A\left( {{x}_{1}},{{y}_{1}} \right)$ and $B\left( {{x}_{2}},{{y}_{2}} \right)$ in the ratio AP : PB = m : n, internally or externally.
2) For internal division: $P(x,y)=\left( \dfrac{m{{x}_{2}}+n{{x}_{1}}}{m+n},\dfrac{m{{y}_{2}}+n{{y}_{1}}}{m+n} \right)$ .
3) For external division: $P(x,y)=\left( \dfrac{m{{x}_{2}}-n{{x}_{1}}}{m-n},\dfrac{m{{y}_{2}}-n{{y}_{1}}}{m-n} \right)$ .
4) For three points $A\left( {{x}_{1}},{{y}_{1}} \right)$ , $B\left( {{x}_{2}},{{y}_{2}} \right)$ and $C\left( {{x}_{3}},{{y}_{3}} \right)$ to be collinear, the ratio m : n should be same in both ${{x}_{3}}=\dfrac{m{{x}_{2}}+n{{x}_{1}}}{m+n}$ and ${{y}_{3}}=\dfrac{m{{y}_{2}}+n{{y}_{1}}}{m+n}$ .
i.e. $\dfrac{m}{n}=\dfrac{{{x}_{1}}-{{x}_{3}}}{{{x}_{3}}-{{x}_{2}}}=\dfrac{{{y}_{1}}-{{y}_{3}}}{{{y}_{3}}-{{y}_{2}}}$ .
Complete step by step solution:
Let's say that the points are $A\left( {{x}_{1}},{{y}_{1}} \right)=\left( 3,-2 \right)$ , $B\left( {{x}_{2}},{{y}_{2}} \right)=\left( 5,2 \right)$ and $C\left( {{x}_{3}},{{y}_{3}} \right)=\left( 8,8 \right)$ .
We know that, using the section formula, that for the points to be collinear: $\dfrac{m}{n}=\dfrac{{{x}_{1}}-{{x}_{3}}}{{{x}_{3}}-{{x}_{2}}}=\dfrac{{{y}_{1}}-{{y}_{3}}}{{{y}_{3}}-{{y}_{2}}}$ .
Here, $\dfrac{{{x}_{1}}-{{x}_{3}}}{{{x}_{3}}-{{x}_{2}}}=\dfrac{3-8}{8-5}=\dfrac{-5}{3}$ and $\dfrac{{{y}_{1}}-{{y}_{3}}}{{{y}_{3}}-{{y}_{2}}}=\dfrac{-2-8}{8-2}=\dfrac{-10}{6}=\dfrac{-5}{3}$.
Since both the values are the same, the points are collinear. Also, a negative value of $\dfrac{m}{n}=\dfrac{-5}{3}$ suggests that the point C is outside AB and the ratio AC : BC = 5 : 3.
The position of the three points is shown below:

Note:
1) There are many ways to show that three points A, B and C are collinear (in a straight line):
2) Section formula (Ratio / Slope method).
3) Distance method: AB + BC = AC.
4) Area method: Area of Δ ABC = 0.
Recently Updated Pages
Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Earth rotates from West to east ATrue BFalse class 6 social science CBSE

The easternmost longitude of India is A 97circ 25E class 6 social science CBSE

Write the given sentence in the passive voice Ann cant class 6 CBSE

Convert 1 foot into meters A030 meter B03048 meter-class-6-maths-CBSE

What is the LCM of 30 and 40 class 6 maths CBSE

Trending doubts
Which one is a true fish A Jellyfish B Starfish C Dogfish class 11 biology CBSE

What is the difference between superposition and e class 11 physics CBSE

State and prove Bernoullis theorem class 11 physics CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
