
What is the shortest distance of the point (0,c) from the parabola $y={{x}^{2}}$ where $0\le c\le 5$.
(a) $c\,if\,0\le c\le \dfrac{1}{2}$
(b) \[c\,if\,3\le c\le 5\]
(c) \[\sqrt{c-\dfrac{1}{4}}\,if\,\dfrac{1}{2}\le c\le 5,\,c\,if\,0\le c\le \dfrac{1}{2}\]
(d) $\sqrt{c}$
Answer
611.1k+ views
Hint: In this question, we will write equation of shortest distance using distance formula, which is given as : the distance between the points $\left( {{x}_{1}},{{y}_{1}} \right)$ and $\left( {{x}_{2}},{{y}_{2}} \right)$ is given as $D=\sqrt{{{\left( {{x}_{1}}-{{x}_{2}} \right)}^{2}}+{{\left( {{y}_{1}}-{{y}_{2}} \right)}^{2}}}$. Then we will minimise it using the concept of application of differentiation.
Complete step-by-step answer:
In the given question, we have parabola, $y={{x}^{2}}$.
We are to find the shortest distance of point (0.c) from parabola, where $0\le c\le 5$.
Let us consider the point, where the line segment of shortest distance from (o,c) meets parabola to be (a,b).
Let the shortest distance be D. The diagrammatic representation can be given as:
We know, the distance between the points $\left( {{x}_{1}},{{y}_{1}} \right)$ and $\left( {{x}_{2}},{{y}_{2}} \right)$ is given as $D=\sqrt{{{\left( {{x}_{1}}-{{x}_{2}} \right)}^{2}}+{{\left( {{y}_{1}}-{{y}_{2}} \right)}^{2}}}$ .
Thus, using the formula of distance between two point, we can write,
$\begin{align}
& D=\sqrt{{{\left( a-0 \right)}^{2}}+{{\left( b-c \right)}^{2}}} \\
& \Rightarrow D=\sqrt{{{a}^{2}}+{{\left( b-c \right)}^{2}}}.............(i) \\
\end{align}$
Since, point (a,b) lies on the parabola, it will satisfy the equation of parabola. Therefore,
$b={{a}^{2}}$
Using this value of b in (i), we get,
$D=\sqrt{{{a}^{2}}+{{\left( {{a}^{2}}-c \right)}^{2}}}$
Squaring this equation on both sides, we get,
${{D}^{2}}={{a}^{2}}+{{\left( {{a}^{2}}-c \right)}^{2}}$
$\Rightarrow {{D}^{2}}={{a}^{2}}+{{\left( {{a}^{2}} \right)}^{2}}-2{{a}^{2}}.c+{{c}^{2}}$
$\Rightarrow {{D}^{2}}={{a}^{2}}+{{a}^{4}}-2{{a}^{2}}c+{{c}^{2}}$
$\Rightarrow {{D}^{2}}={{a}^{4}}+{{a}^{2}}\left( 1-2c \right)+{{c}^{2}}...........(ii)$
For the shortest distance, we need to minimise d. For which, we first need to find the critical point of equation (ii). Let us differentiate D with respect to a, so we get,
$2D\dfrac{dD}{da}=4{{a}^{3}}+2a\left( 1-2c \right)$
$\Rightarrow \dfrac{dD}{da}=\dfrac{4{{a}^{3}}+2a\left( 1-2c \right)}{2D}............(iii)$
To find critical point, we equate $\dfrac{dD}{da}$ with 0, so we get,
$\dfrac{dD}{da}=0$
$\Rightarrow \dfrac{4{{a}^{3}}+2a\left( 1-2c \right)}{2D}=0$
Multiplying 2D on both sides of the equation, we get,
$\begin{align}
& 4{{a}^{3}}+2a\left( 1-2c \right)=0 \\
& \Rightarrow 2a\left( 2{{a}^{2}}+1-2c \right)=0 \\
\end{align}$
Therefore, either 2a = 0 or ${{a}^{2}}+1-2c=0$
$\Rightarrow a=0\,\,\,\,\,\,\,or\,\,\,\,\,\,2{{a}^{2}}=2c-1$
Taking root, we get,
\[a=0\,\,\,\,or\,\,\,a=\pm \sqrt{\dfrac{2c-1}{2}}\]
Here, for $\,0\le c\le \dfrac{1}{2}$ value under root of \[a=\pm \sqrt{\dfrac{2c-1}{2}}\] will be negative, which will make a imaginary.
Therefore a=0. Now, double differentiating D, from equation (iii), we get,
$2{{\left( \dfrac{dD}{Da} \right)}^{2}}+2\dfrac{{{d}^{2}}D}{d{{a}^{2}}}=12{{a}^{2}}+2\left( 1-2c \right)$
For, $\,0\le c\le \dfrac{1}{2}$ and a=0.
\[\dfrac{{{d}^{2}}D}{d{{a}^{2}}}\] will be positive.
Hence, a is a point of minima for D.
$b={{a}^{2}}={{0}^{2}}=0$
Hence the point on parabola of shortest distance from (0,c) is (0,0), when $\,0\le c\le \dfrac{1}{2}$.
$D=\sqrt{{{0}^{2}}+{{c}^{2}}}$
$=c$, When $\,0\le c\le \dfrac{1}{2}$
Now, when \[\,\dfrac{1}{2}\le c\le 5\], for a=0 \[\dfrac{{{d}^{2}}D}{d{{a}^{2}}}\] will be negative, hence not a point of minima.
But, for \[\,\dfrac{1}{2}\le c\le 5\] and \[a=\pm \sqrt{\dfrac{2c-1}{2}}\], \[\dfrac{{{d}^{2}}D}{d{{a}^{2}}}\] will be positive, so it will be point of minima.
So, here $b={{a}^{2}}=\dfrac{2c-1}{2}$
So, point on parabola for shortest distance from (0,c) is $\left( \pm \sqrt{\dfrac{2c-1}{2}},\dfrac{2c-1}{2} \right)$ when \[\,\dfrac{1}{2}\le c\le 5\].
So, here \[D=\sqrt{{{a}^{4}}+{{a}^{2}}\left( 1-2c \right)+{{c}^{2}}}\]
\[=\sqrt{{{\left( \dfrac{2c-1}{2} \right)}^{2}}+\dfrac{2c-1}{2}\left( 1-2c \right)+{{c}^{2}}}\]
\[=\sqrt{\dfrac{4{{c}^{2}}-4c+1}{4}+\dfrac{\left( 2c-1 \right)\left( 1-2c \right)}{2}+{{c}^{2}}}\]
Taking LCM and solving, we get,
$D=\sqrt{\dfrac{4{{c}^{2}}-4c+1+4c-8c-2+4c+4{{c}^{2}}}{4}}$
$=\sqrt{\dfrac{4c-1}{4}}=\sqrt{c-\dfrac{1}{4}}$
Hence, shortest distance is $\sqrt{c-\dfrac{1}{4}}$ if \[\,\dfrac{1}{2}\le c\le 5\] and c is $\,0\le c\le \dfrac{1}{2}$.
Therefore, (c) is the correct option.
Note: While doing calculations, take care of the signs. Sign mistakes are very common and students can end up in getting the wrong answer. So, students should be very careful and should avoid sign mistakes.
Complete step-by-step answer:
In the given question, we have parabola, $y={{x}^{2}}$.
We are to find the shortest distance of point (0.c) from parabola, where $0\le c\le 5$.
Let us consider the point, where the line segment of shortest distance from (o,c) meets parabola to be (a,b).
Let the shortest distance be D. The diagrammatic representation can be given as:
We know, the distance between the points $\left( {{x}_{1}},{{y}_{1}} \right)$ and $\left( {{x}_{2}},{{y}_{2}} \right)$ is given as $D=\sqrt{{{\left( {{x}_{1}}-{{x}_{2}} \right)}^{2}}+{{\left( {{y}_{1}}-{{y}_{2}} \right)}^{2}}}$ .
Thus, using the formula of distance between two point, we can write,
$\begin{align}
& D=\sqrt{{{\left( a-0 \right)}^{2}}+{{\left( b-c \right)}^{2}}} \\
& \Rightarrow D=\sqrt{{{a}^{2}}+{{\left( b-c \right)}^{2}}}.............(i) \\
\end{align}$
Since, point (a,b) lies on the parabola, it will satisfy the equation of parabola. Therefore,
$b={{a}^{2}}$
Using this value of b in (i), we get,
$D=\sqrt{{{a}^{2}}+{{\left( {{a}^{2}}-c \right)}^{2}}}$
Squaring this equation on both sides, we get,
${{D}^{2}}={{a}^{2}}+{{\left( {{a}^{2}}-c \right)}^{2}}$
$\Rightarrow {{D}^{2}}={{a}^{2}}+{{\left( {{a}^{2}} \right)}^{2}}-2{{a}^{2}}.c+{{c}^{2}}$
$\Rightarrow {{D}^{2}}={{a}^{2}}+{{a}^{4}}-2{{a}^{2}}c+{{c}^{2}}$
$\Rightarrow {{D}^{2}}={{a}^{4}}+{{a}^{2}}\left( 1-2c \right)+{{c}^{2}}...........(ii)$
For the shortest distance, we need to minimise d. For which, we first need to find the critical point of equation (ii). Let us differentiate D with respect to a, so we get,
$2D\dfrac{dD}{da}=4{{a}^{3}}+2a\left( 1-2c \right)$
$\Rightarrow \dfrac{dD}{da}=\dfrac{4{{a}^{3}}+2a\left( 1-2c \right)}{2D}............(iii)$
To find critical point, we equate $\dfrac{dD}{da}$ with 0, so we get,
$\dfrac{dD}{da}=0$
$\Rightarrow \dfrac{4{{a}^{3}}+2a\left( 1-2c \right)}{2D}=0$
Multiplying 2D on both sides of the equation, we get,
$\begin{align}
& 4{{a}^{3}}+2a\left( 1-2c \right)=0 \\
& \Rightarrow 2a\left( 2{{a}^{2}}+1-2c \right)=0 \\
\end{align}$
Therefore, either 2a = 0 or ${{a}^{2}}+1-2c=0$
$\Rightarrow a=0\,\,\,\,\,\,\,or\,\,\,\,\,\,2{{a}^{2}}=2c-1$
Taking root, we get,
\[a=0\,\,\,\,or\,\,\,a=\pm \sqrt{\dfrac{2c-1}{2}}\]
Here, for $\,0\le c\le \dfrac{1}{2}$ value under root of \[a=\pm \sqrt{\dfrac{2c-1}{2}}\] will be negative, which will make a imaginary.
Therefore a=0. Now, double differentiating D, from equation (iii), we get,
$2{{\left( \dfrac{dD}{Da} \right)}^{2}}+2\dfrac{{{d}^{2}}D}{d{{a}^{2}}}=12{{a}^{2}}+2\left( 1-2c \right)$
For, $\,0\le c\le \dfrac{1}{2}$ and a=0.
\[\dfrac{{{d}^{2}}D}{d{{a}^{2}}}\] will be positive.
Hence, a is a point of minima for D.
$b={{a}^{2}}={{0}^{2}}=0$
Hence the point on parabola of shortest distance from (0,c) is (0,0), when $\,0\le c\le \dfrac{1}{2}$.
$D=\sqrt{{{0}^{2}}+{{c}^{2}}}$
$=c$, When $\,0\le c\le \dfrac{1}{2}$
Now, when \[\,\dfrac{1}{2}\le c\le 5\], for a=0 \[\dfrac{{{d}^{2}}D}{d{{a}^{2}}}\] will be negative, hence not a point of minima.
But, for \[\,\dfrac{1}{2}\le c\le 5\] and \[a=\pm \sqrt{\dfrac{2c-1}{2}}\], \[\dfrac{{{d}^{2}}D}{d{{a}^{2}}}\] will be positive, so it will be point of minima.
So, here $b={{a}^{2}}=\dfrac{2c-1}{2}$
So, point on parabola for shortest distance from (0,c) is $\left( \pm \sqrt{\dfrac{2c-1}{2}},\dfrac{2c-1}{2} \right)$ when \[\,\dfrac{1}{2}\le c\le 5\].
So, here \[D=\sqrt{{{a}^{4}}+{{a}^{2}}\left( 1-2c \right)+{{c}^{2}}}\]
\[=\sqrt{{{\left( \dfrac{2c-1}{2} \right)}^{2}}+\dfrac{2c-1}{2}\left( 1-2c \right)+{{c}^{2}}}\]
\[=\sqrt{\dfrac{4{{c}^{2}}-4c+1}{4}+\dfrac{\left( 2c-1 \right)\left( 1-2c \right)}{2}+{{c}^{2}}}\]
Taking LCM and solving, we get,
$D=\sqrt{\dfrac{4{{c}^{2}}-4c+1+4c-8c-2+4c+4{{c}^{2}}}{4}}$
$=\sqrt{\dfrac{4c-1}{4}}=\sqrt{c-\dfrac{1}{4}}$
Hence, shortest distance is $\sqrt{c-\dfrac{1}{4}}$ if \[\,\dfrac{1}{2}\le c\le 5\] and c is $\,0\le c\le \dfrac{1}{2}$.
Therefore, (c) is the correct option.
Note: While doing calculations, take care of the signs. Sign mistakes are very common and students can end up in getting the wrong answer. So, students should be very careful and should avoid sign mistakes.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

10 examples of friction in our daily life

