
Say true or false:
If A is a periodic matrix with period 2, then $ {A^6} = A $
a. True
b. False
Answer
550.5k+ views
Hint: In this question they have mentioned the periodic matrix, the periodic matrix is defined as a square matrix such that $ {A^{k + 1}} = A $ , where k is a its period. Suppose if k = 1 then $ {A^2} = A $ and this is called an idempotent matrix.
Complete step-by-step answer:
Now in this question they have mentioned that the matrix A is a periodic matrix with period 2. So now we will check that by considering the matrix
Let $ A = \left[ {\begin{array}{*{20}{c}}
1&{ - 2}&{ - 6} \\
{ - 3}&2&9 \\
2&0&{ - 3}
\end{array}} \right] $
First, we prove $ {A^3} = A $
So, consider the matrix A and find $ {A^2} $
$
{A^2} = A \times A \\
\Rightarrow {A^2} = \left[ {\begin{array}{*{20}{c}}
1&{ - 2}&{ - 6} \\
{ - 3}&2&9 \\
2&0&{ - 3}
\end{array}} \right] \times \left[ {\begin{array}{*{20}{c}}
1&{ - 2}&{ - 6} \\
{ - 3}&2&9 \\
2&0&{ - 3}
\end{array}} \right] \\
$
By multiplying
$ \Rightarrow {A^2} = \left[ {\begin{array}{*{20}{c}}
{1 \times 1 - 2 \times - 3 - 6 \times 2}&{1 \times - 2 - 2 \times 2 - 6 \times 0}&{1 \times - 6 - 2 \times 9 - 6 \times - 3} \\
{ - 3 \times 1 + 2 \times - 3 + 9 \times 2}&{ - 3 \times - 2 + 2 \times 2 + 9 \times 0}&{ - 3 \times - 6 + 2 \times 9 + 9 \times - 3} \\
{2 \times 1 + 0 \times - 3 - 3 \times 2}&{2 \times - 2 + 0 \times 2 - 3 \times 0}&{2 \times - 6 + 0 \times 9 - 3 \times - 3}
\end{array}} \right] $
On simplifying we have
$
\Rightarrow {A^2} = \left[ {\begin{array}{*{20}{c}}
{1 + 6 - 12}&{ - 2 - 4 + 0}&{ - 6 - 18 + 18} \\
{ - 3 - 6 + 18}&{6 + 4 + 0}&{18 + 18 - 27} \\
{2 + 0 - 6}&{ - 4 + 0 + 0}&{ - 12 + 0 + 9}
\end{array}} \right] \\
\Rightarrow {A^2} = \left[ {\begin{array}{*{20}{c}}
{ - 5}&{ - 6}&{ - 6} \\
9&{10}&9 \\
{ - 4}&{ - 4}&{ - 3}
\end{array}} \right] \\
$
Now we find the value of $ {A^3} $ that is the product of $ {A^2} $ and A.
$
{A^3} = {A^2} \times A \\
\Rightarrow {A^3} = \left[ {\begin{array}{*{20}{c}}
{ - 5}&{ - 6}&6 \\
9&{10}&9 \\
{ - 4}&{ - 4}&{ - 3}
\end{array}} \right] \times \left[ {\begin{array}{*{20}{c}}
1&{ - 2}&{ - 6} \\
{ - 3}&2&9 \\
2&0&{ - 3}
\end{array}} \right] \\
$
By multiplying
$ \Rightarrow {A^3} = \left[ {\begin{array}{*{20}{c}}
{ - 5 \times 1 - 6 \times - 3 - 6 \times 2}&{ - 5 \times - 2 - 6 \times 2 - 6 \times 0}&{ - 5 \times - 6 - 6 \times 9 - 6 \times - 3} \\
{9 \times 1 + 10 \times - 3 + 9 \times 2}&{9 \times - 2 + 10 \times 2 + 9 \times 0}&{9 \times - 6 + 10 \times 9 + 9 \times - 3} \\
{ - 4 \times 1 + - 4 \times - 3 - 3 \times 2}&{ - 4 \times - 2 - 4 \times 2 - 3 \times 0}&{ - 4 \times - 6 - 4 \times 9 - 3 \times - 3}
\end{array}} \right] $
On simplifying we have
$
\Rightarrow {A^3} = \left[ {\begin{array}{*{20}{c}}
{ - 5 + 18 - 12}&{10 - 12 + 0}&{30 - 54 + 18} \\
{9 - 30 + 18}&{ - 18 + 20 + 0}&{ - 54 + 90 - 27} \\
{ - 4 + 12 - 6}&{8 - 8 + 0}&{24 - 36 + 9}
\end{array}} \right] \\
\Rightarrow {A^3} = \left[ {\begin{array}{*{20}{c}}
1&{ - 2}&{ - 6} \\
{ - 3}&2&9 \\
2&0&{ - 3}
\end{array}} \right] \\
$
Hence, we obtained $ {A^3} = A $ and we can say that the matrix A is a periodic matrix with period 2. We have proved that by considering the matrix. Hence the matrix A is a periodic matrix.
Now we want to prove that $ {A^6} = A $
By the definition of periodic matrix, we have a square matrix such that $ {A^{k + 1}} = A $ , where k is a period. We already proved that $ {A^3} = A $ and its period is 2. If the given matrix is a periodic it satisfies another condition that is $ {A^2} = A $ . Therefore $ {A^6} $ can be written as
$ {A^6} = {\left( {{A^3}} \right)^2} $
Already we have proved that $ {A^3} = A $ , by substituting that we can write the above inequality as
$
\Rightarrow {A^6} = {\left( A \right)^2} \\
\Rightarrow {A^6} = {A^2} \\
$
Therefore $ {A^6} \ne A $
The answer for the given question is false. Because $ {A^6} \ne A $ but $ {A^6} = {A^2} $
So, the correct answer is “Option b”.
Note: We must know the definition of the periodic matrix which makes us understand the question properly. We can solve the above question in only two steps . In the question they have already mentioned that a is a periodic matrix with 2 as its period, $ {A^3} = A $ . Now consider $ {A^6} $ can be written as $ {A^6} = {\left( {{A^3}} \right)^2} $ where $ {A^3} = A $ we have $ {A^6} = {A^2} $ and we can say it is false. We did a lengthy process to verify the A is a periodic matrix of period 2.
Complete step-by-step answer:
Now in this question they have mentioned that the matrix A is a periodic matrix with period 2. So now we will check that by considering the matrix
Let $ A = \left[ {\begin{array}{*{20}{c}}
1&{ - 2}&{ - 6} \\
{ - 3}&2&9 \\
2&0&{ - 3}
\end{array}} \right] $
First, we prove $ {A^3} = A $
So, consider the matrix A and find $ {A^2} $
$
{A^2} = A \times A \\
\Rightarrow {A^2} = \left[ {\begin{array}{*{20}{c}}
1&{ - 2}&{ - 6} \\
{ - 3}&2&9 \\
2&0&{ - 3}
\end{array}} \right] \times \left[ {\begin{array}{*{20}{c}}
1&{ - 2}&{ - 6} \\
{ - 3}&2&9 \\
2&0&{ - 3}
\end{array}} \right] \\
$
By multiplying
$ \Rightarrow {A^2} = \left[ {\begin{array}{*{20}{c}}
{1 \times 1 - 2 \times - 3 - 6 \times 2}&{1 \times - 2 - 2 \times 2 - 6 \times 0}&{1 \times - 6 - 2 \times 9 - 6 \times - 3} \\
{ - 3 \times 1 + 2 \times - 3 + 9 \times 2}&{ - 3 \times - 2 + 2 \times 2 + 9 \times 0}&{ - 3 \times - 6 + 2 \times 9 + 9 \times - 3} \\
{2 \times 1 + 0 \times - 3 - 3 \times 2}&{2 \times - 2 + 0 \times 2 - 3 \times 0}&{2 \times - 6 + 0 \times 9 - 3 \times - 3}
\end{array}} \right] $
On simplifying we have
$
\Rightarrow {A^2} = \left[ {\begin{array}{*{20}{c}}
{1 + 6 - 12}&{ - 2 - 4 + 0}&{ - 6 - 18 + 18} \\
{ - 3 - 6 + 18}&{6 + 4 + 0}&{18 + 18 - 27} \\
{2 + 0 - 6}&{ - 4 + 0 + 0}&{ - 12 + 0 + 9}
\end{array}} \right] \\
\Rightarrow {A^2} = \left[ {\begin{array}{*{20}{c}}
{ - 5}&{ - 6}&{ - 6} \\
9&{10}&9 \\
{ - 4}&{ - 4}&{ - 3}
\end{array}} \right] \\
$
Now we find the value of $ {A^3} $ that is the product of $ {A^2} $ and A.
$
{A^3} = {A^2} \times A \\
\Rightarrow {A^3} = \left[ {\begin{array}{*{20}{c}}
{ - 5}&{ - 6}&6 \\
9&{10}&9 \\
{ - 4}&{ - 4}&{ - 3}
\end{array}} \right] \times \left[ {\begin{array}{*{20}{c}}
1&{ - 2}&{ - 6} \\
{ - 3}&2&9 \\
2&0&{ - 3}
\end{array}} \right] \\
$
By multiplying
$ \Rightarrow {A^3} = \left[ {\begin{array}{*{20}{c}}
{ - 5 \times 1 - 6 \times - 3 - 6 \times 2}&{ - 5 \times - 2 - 6 \times 2 - 6 \times 0}&{ - 5 \times - 6 - 6 \times 9 - 6 \times - 3} \\
{9 \times 1 + 10 \times - 3 + 9 \times 2}&{9 \times - 2 + 10 \times 2 + 9 \times 0}&{9 \times - 6 + 10 \times 9 + 9 \times - 3} \\
{ - 4 \times 1 + - 4 \times - 3 - 3 \times 2}&{ - 4 \times - 2 - 4 \times 2 - 3 \times 0}&{ - 4 \times - 6 - 4 \times 9 - 3 \times - 3}
\end{array}} \right] $
On simplifying we have
$
\Rightarrow {A^3} = \left[ {\begin{array}{*{20}{c}}
{ - 5 + 18 - 12}&{10 - 12 + 0}&{30 - 54 + 18} \\
{9 - 30 + 18}&{ - 18 + 20 + 0}&{ - 54 + 90 - 27} \\
{ - 4 + 12 - 6}&{8 - 8 + 0}&{24 - 36 + 9}
\end{array}} \right] \\
\Rightarrow {A^3} = \left[ {\begin{array}{*{20}{c}}
1&{ - 2}&{ - 6} \\
{ - 3}&2&9 \\
2&0&{ - 3}
\end{array}} \right] \\
$
Hence, we obtained $ {A^3} = A $ and we can say that the matrix A is a periodic matrix with period 2. We have proved that by considering the matrix. Hence the matrix A is a periodic matrix.
Now we want to prove that $ {A^6} = A $
By the definition of periodic matrix, we have a square matrix such that $ {A^{k + 1}} = A $ , where k is a period. We already proved that $ {A^3} = A $ and its period is 2. If the given matrix is a periodic it satisfies another condition that is $ {A^2} = A $ . Therefore $ {A^6} $ can be written as
$ {A^6} = {\left( {{A^3}} \right)^2} $
Already we have proved that $ {A^3} = A $ , by substituting that we can write the above inequality as
$
\Rightarrow {A^6} = {\left( A \right)^2} \\
\Rightarrow {A^6} = {A^2} \\
$
Therefore $ {A^6} \ne A $
The answer for the given question is false. Because $ {A^6} \ne A $ but $ {A^6} = {A^2} $
So, the correct answer is “Option b”.
Note: We must know the definition of the periodic matrix which makes us understand the question properly. We can solve the above question in only two steps . In the question they have already mentioned that a is a periodic matrix with 2 as its period, $ {A^3} = A $ . Now consider $ {A^6} $ can be written as $ {A^6} = {\left( {{A^3}} \right)^2} $ where $ {A^3} = A $ we have $ {A^6} = {A^2} $ and we can say it is false. We did a lengthy process to verify the A is a periodic matrix of period 2.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

