$RX + Mg\xrightarrow{{ether}}RMgX\xrightarrow{{C{H_3}OH}}n - Bu\tan e$
What can be R in the above reaction sequence?
A.N-butyl
B.Sec-butyl
C.N-propyl
D.Isopropyl
Last updated date: 24th Mar 2023
•
Total views: 205.8k
•
Views today: 4.84k
Answer
205.8k+ views
Hint: As we know that Grignard reagent is an organic magnesium compound which can be represented as $R - MgX$, where R refers to an alkyl or aryl group and X is the halogen. This reaction is used so as to make the hydrocarbon having a halide before, without it.
Complete answer:
Halides are very reactive substances and due to their electronegativity creates a difference in charge on it and carbon irrespective of being in a covalent bond. From the very starting those reactions or processes were very important which gave carbon and bond out of any previous compound of carbon.
How to prepare a Grignard reagent: -
These reagents are formed by the reaction of alkyl or aryl halides with magnesium in the Presence of ether. The ligands provided by ether help in stabilising the organ magnesium compound. Water and air are really harmful for the reagent.
Initially the process goes very slowly but as soon as it forms the intermediate compound, this process can be extremely exothermic. The ally and aryl fluorides aren’t used due to the high electronegativity of fluorine. The fluorine has a tendency to attract the electron cloud towards itself and thus not allowing magnesium to even react with the compound in the presence of ether so as to form an organ magnesium compound.
Now it is given that the end product is n-butane. This is a chain of four carbons and that too a straight chain. Therefore, we can say that halogen can be anywhere, among the first degree and second-degree carbons.
First degree carbons are those having one carbon attached to it while second degree carbon are those having two carbons attached to it.
Now R reacts with methanol to form n-butane, so methanol gives one of the carbons to R to form n-butane, and also the methane of methanol attaches at the first-degree position of R, so the previous halide should also be first degree and should have three carbons.
Therefore, the compound R is n-propyl.
Note:
Grignard reagents are known for their ability to quickly target carbonyls at their carbon level. Grignard reagents do not, however, function in the presence of protic solvents. Instead of reacting with the desired molecule, the Grignard is so unstable that it can readily accept a proton from a protic solvent.
Complete answer:
Halides are very reactive substances and due to their electronegativity creates a difference in charge on it and carbon irrespective of being in a covalent bond. From the very starting those reactions or processes were very important which gave carbon and bond out of any previous compound of carbon.
How to prepare a Grignard reagent: -
These reagents are formed by the reaction of alkyl or aryl halides with magnesium in the Presence of ether. The ligands provided by ether help in stabilising the organ magnesium compound. Water and air are really harmful for the reagent.
Initially the process goes very slowly but as soon as it forms the intermediate compound, this process can be extremely exothermic. The ally and aryl fluorides aren’t used due to the high electronegativity of fluorine. The fluorine has a tendency to attract the electron cloud towards itself and thus not allowing magnesium to even react with the compound in the presence of ether so as to form an organ magnesium compound.
Now it is given that the end product is n-butane. This is a chain of four carbons and that too a straight chain. Therefore, we can say that halogen can be anywhere, among the first degree and second-degree carbons.
First degree carbons are those having one carbon attached to it while second degree carbon are those having two carbons attached to it.
Now R reacts with methanol to form n-butane, so methanol gives one of the carbons to R to form n-butane, and also the methane of methanol attaches at the first-degree position of R, so the previous halide should also be first degree and should have three carbons.
Therefore, the compound R is n-propyl.
Note:
Grignard reagents are known for their ability to quickly target carbonyls at their carbon level. Grignard reagents do not, however, function in the presence of protic solvents. Instead of reacting with the desired molecule, the Grignard is so unstable that it can readily accept a proton from a protic solvent.
Recently Updated Pages
Most eubacterial antibiotics are obtained from A Rhizobium class 12 biology NEET_UG

Salamin bioinsecticides have been extracted from A class 12 biology NEET_UG

Which of the following statements regarding Baculoviruses class 12 biology NEET_UG

Sewage or municipal sewer pipes should not be directly class 12 biology NEET_UG

Sewage purification is performed by A Microbes B Fertilisers class 12 biology NEET_UG

Enzyme immobilisation is Aconversion of an active enzyme class 12 biology NEET_UG

Trending doubts
Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Epipetalous and syngenesious stamens occur in aSolanaceae class 11 biology CBSE
