Answer
Verified
366k+ views
Hint: In the given question, we have to find the compound interest where the principal amount is borrowed and the rate of annual interest is given. We can use the formula \[A = P{(1 + \dfrac{r}{n})^{n\,t}}\] to calculate the amount payable after three years and then deduct the principal amount to arrive at the compound interest i.e. \[CI = A - P\].
Complete step by step solution:
Compound interest (also known as compounding interest) is the interest on a loan or deposit that is measured using both the original principal and the interest accrued over time.
The total compounded amount payable after a specific period can be calculated with the following formula:
\[A = P{(1 + \dfrac{r}{n})^{n\,t}}\]
Where,
\[A = \]Final Amount
\[P = \]Principal Amount
\[r = \]Rate of interest
\[n = \]Number of times interest is to be compounded per year/annum
\[t = \]Time (in years)
For example, Rs.\[100\] compounded at \[10\% \] per annum for \[2\] year will result in:
\[ = 100{(1 + \dfrac{{10\% }}{1})^{(1)(2)}}\]
\[ = 100{(1 + 0.1)^2}\]
On simplifying in further we get
\[ = 100{(1.1)^2}\]
\[ = 100(1.21)\]
\[ = 121\]
Here, if the interest was to be compounded half-yearly, then \[n = 4\]as interest will be compounded four times over the two years half-yearly. Similarly, if it was quarterly, then \[n = 8\].
Now we can solve the sum as follows:
The loan taken will become our principal amount and rate of interest is given to be compounded annually. Hence-
\[P = 16,000\]
\[n = 1\] (annually)
\[t = 3\] (years)
\[r = 12\dfrac{1}{2}\% = 0.125\]
Applying the formula, we get,
\[A = P{(1 + \dfrac{r}{n})^{n\,t}}\]
\[A = 16000{(1 + \dfrac{{0.125}}{1})^{(1)(3)}}\]
\[A = 16000{(1 + 0.125)^3}\]
On simplifying in further we get
\[A = 16000{(1.125)^3}\]
\[A = 16000(1.4238)\]
\[A = 22781.25\]
Now Compound Interest (CI) can be found out as follows:
\[CI = A - P\]
\[CI = 22781.25 - 16000\]
\[CI = 6781.25\]
Hence compounded Interest will be \[Rs.6781.25\] over the period of three years. Therefore, Option (A) is correct.
Note:
We can also apply the following formula to solve the sum directly:
\[CI = P[{(1 + \dfrac{r}{{100}})^n} - 1]\] where \[n = \]number of years
\[CI = 16000[{(1 + \dfrac{{12.5}}{{100}})^3} - 1]\]
\[CI = 16000[{(1 + 0.125)^3} - 1]\]
On simplifying in further we get
\[CI = 16000[{(1.125)^3} - 1]\]
\[CI = 16000[1.4238 - 1]\]
\[CI = 16000[0.4238]\]
\[CI = 6780.8\]
Difference of \[6781.25 - 6780.8 = 0.45\] in the answer is due to decimal points.
Complete step by step solution:
Compound interest (also known as compounding interest) is the interest on a loan or deposit that is measured using both the original principal and the interest accrued over time.
The total compounded amount payable after a specific period can be calculated with the following formula:
\[A = P{(1 + \dfrac{r}{n})^{n\,t}}\]
Where,
\[A = \]Final Amount
\[P = \]Principal Amount
\[r = \]Rate of interest
\[n = \]Number of times interest is to be compounded per year/annum
\[t = \]Time (in years)
For example, Rs.\[100\] compounded at \[10\% \] per annum for \[2\] year will result in:
\[ = 100{(1 + \dfrac{{10\% }}{1})^{(1)(2)}}\]
\[ = 100{(1 + 0.1)^2}\]
On simplifying in further we get
\[ = 100{(1.1)^2}\]
\[ = 100(1.21)\]
\[ = 121\]
Here, if the interest was to be compounded half-yearly, then \[n = 4\]as interest will be compounded four times over the two years half-yearly. Similarly, if it was quarterly, then \[n = 8\].
Now we can solve the sum as follows:
The loan taken will become our principal amount and rate of interest is given to be compounded annually. Hence-
\[P = 16,000\]
\[n = 1\] (annually)
\[t = 3\] (years)
\[r = 12\dfrac{1}{2}\% = 0.125\]
Applying the formula, we get,
\[A = P{(1 + \dfrac{r}{n})^{n\,t}}\]
\[A = 16000{(1 + \dfrac{{0.125}}{1})^{(1)(3)}}\]
\[A = 16000{(1 + 0.125)^3}\]
On simplifying in further we get
\[A = 16000{(1.125)^3}\]
\[A = 16000(1.4238)\]
\[A = 22781.25\]
Now Compound Interest (CI) can be found out as follows:
\[CI = A - P\]
\[CI = 22781.25 - 16000\]
\[CI = 6781.25\]
Hence compounded Interest will be \[Rs.6781.25\] over the period of three years. Therefore, Option (A) is correct.
Note:
We can also apply the following formula to solve the sum directly:
\[CI = P[{(1 + \dfrac{r}{{100}})^n} - 1]\] where \[n = \]number of years
\[CI = 16000[{(1 + \dfrac{{12.5}}{{100}})^3} - 1]\]
\[CI = 16000[{(1 + 0.125)^3} - 1]\]
On simplifying in further we get
\[CI = 16000[{(1.125)^3} - 1]\]
\[CI = 16000[1.4238 - 1]\]
\[CI = 16000[0.4238]\]
\[CI = 6780.8\]
Difference of \[6781.25 - 6780.8 = 0.45\] in the answer is due to decimal points.
Recently Updated Pages
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Advantages and disadvantages of science
Trending doubts
Which are the Top 10 Largest Countries of the World?
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
How do you graph the function fx 4x class 9 maths CBSE
Select the word that is correctly spelled a Twelveth class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE