
How do you rewrite $\cos 3\theta $ in terms of only $\cos \theta $ and $\sin \theta $?
Answer
483k+ views
Hint: We first try to use the associative formula of $\cos \left( x+y \right)=\cos x\cos y-\sin x\sin y$ for $\cos 3\theta $. We convert all the ratios to cos form by using $\cos 2\theta =2{{\cos }^{2}}\theta -1$ and $\sin 2\theta =2\sin \theta \cos \theta $. Change of identity formula of ${{\sin }^{2}}\theta =1-{{\cos }^{2}}\theta $ gives the solution.
Complete step-by-step answer:
We know the multiple angle formula of $\cos 2\theta =2{{\cos }^{2}}\theta -1$ and $\sin 2\theta =2\sin \theta \cos \theta $.
We now break the given $\cos 3\theta $ as $\cos \left( 2\theta +\theta \right)$.
We now use the associative angle formula of $\cos \left( x+y \right)=\cos x\cos y-\sin x\sin y$.
Placing the values $x=2\theta ,y=\theta $ we get
$\begin{align}
& \cos \left( 2\theta +\theta \right) \\
& =\cos \left( 2\theta \right)\cos \theta -\sin \left( 2\theta \right)\sin \theta \\
\end{align}$
Now we replace the values and get
$\begin{align}
& \cos \left( 2\theta +\theta \right) \\
& =\left( 2{{\cos }^{2}}\theta -1 \right)\cos \theta -\left( 2\sin \theta \cos \theta \right)\sin \theta \\
& =2{{\cos }^{3}}\theta -\cos \theta -2{{\sin }^{2}}\theta \cos \theta \\
\end{align}$
Now we try to convert the ratio sin into ratio of cos. We use ${{\sin }^{2}}\theta =1-{{\cos }^{2}}\theta $.
Therefore,
$\begin{align}
& \cos \left( 2\theta +\theta \right) \\
& =2{{\cos }^{3}}\theta -\cos \theta -2{{\sin }^{2}}\theta \cos \theta \\
& =2{{\cos }^{3}}\theta -\cos \theta -2\left( 1-{{\cos }^{2}}\theta \right)\cos \theta \\
& =2{{\cos }^{3}}\theta -\cos \theta -2\cos \theta +2{{\cos }^{3}}\theta \\
& =4{{\cos }^{3}}\theta -3\cos \theta \\
\end{align}$
Therefore, expressing $\cos 3\theta $ in terms of only $\cos \theta $, we get $\cos 3\theta =4{{\cos }^{3}}\theta -3\cos \theta $.
Now we try to convert them into ratio sin.
$\begin{align}
& \cos 3\theta \\
& =\cos \theta \left( 4{{\cos }^{2}}\theta -3 \right) \\
& =\cos \theta \left( 4-4{{\sin }^{2}}\theta -3 \right) \\
& =\cos \theta \left( 1-4{{\sin }^{2}}\theta \right) \\
\end{align}$
So, the correct answer is “$\cos \theta \left( 1-4{{\sin }^{2}}\theta \right)$”.
Note: We cannot convert the whole expression into expression of $\sin \theta $ as that brings the root form of \[\cos \theta =\pm \sqrt{1-{{\sin }^{2}}\theta }\]. This form is not a proper expression to get the exact value we need to know about the position of the angle to find the sign.
Complete step-by-step answer:
We know the multiple angle formula of $\cos 2\theta =2{{\cos }^{2}}\theta -1$ and $\sin 2\theta =2\sin \theta \cos \theta $.
We now break the given $\cos 3\theta $ as $\cos \left( 2\theta +\theta \right)$.
We now use the associative angle formula of $\cos \left( x+y \right)=\cos x\cos y-\sin x\sin y$.
Placing the values $x=2\theta ,y=\theta $ we get
$\begin{align}
& \cos \left( 2\theta +\theta \right) \\
& =\cos \left( 2\theta \right)\cos \theta -\sin \left( 2\theta \right)\sin \theta \\
\end{align}$
Now we replace the values and get
$\begin{align}
& \cos \left( 2\theta +\theta \right) \\
& =\left( 2{{\cos }^{2}}\theta -1 \right)\cos \theta -\left( 2\sin \theta \cos \theta \right)\sin \theta \\
& =2{{\cos }^{3}}\theta -\cos \theta -2{{\sin }^{2}}\theta \cos \theta \\
\end{align}$
Now we try to convert the ratio sin into ratio of cos. We use ${{\sin }^{2}}\theta =1-{{\cos }^{2}}\theta $.
Therefore,
$\begin{align}
& \cos \left( 2\theta +\theta \right) \\
& =2{{\cos }^{3}}\theta -\cos \theta -2{{\sin }^{2}}\theta \cos \theta \\
& =2{{\cos }^{3}}\theta -\cos \theta -2\left( 1-{{\cos }^{2}}\theta \right)\cos \theta \\
& =2{{\cos }^{3}}\theta -\cos \theta -2\cos \theta +2{{\cos }^{3}}\theta \\
& =4{{\cos }^{3}}\theta -3\cos \theta \\
\end{align}$
Therefore, expressing $\cos 3\theta $ in terms of only $\cos \theta $, we get $\cos 3\theta =4{{\cos }^{3}}\theta -3\cos \theta $.
Now we try to convert them into ratio sin.
$\begin{align}
& \cos 3\theta \\
& =\cos \theta \left( 4{{\cos }^{2}}\theta -3 \right) \\
& =\cos \theta \left( 4-4{{\sin }^{2}}\theta -3 \right) \\
& =\cos \theta \left( 1-4{{\sin }^{2}}\theta \right) \\
\end{align}$
So, the correct answer is “$\cos \theta \left( 1-4{{\sin }^{2}}\theta \right)$”.
Note: We cannot convert the whole expression into expression of $\sin \theta $ as that brings the root form of \[\cos \theta =\pm \sqrt{1-{{\sin }^{2}}\theta }\]. This form is not a proper expression to get the exact value we need to know about the position of the angle to find the sign.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

