Answer
Verified
424.2k+ views
Hint: We will use the algebraic formula of indices to convert the expression of negative exponents into positive exponents. On doing some simplification we get the required answer.
Formula used: Multiplication rule of Indices:
If we multiply any variable \[n\]number of times, then we will put the addition of this \[n\]numbers into the power of that variable.
Like,
\[(m \times m \times m \times m \times ............n\;number\;of\;times)\]
\[ = {m^{(1 + 2 + 3 + 4 + ..... + n)}}\].
Division rule of Indices:
If we divide a variable having an exponent to its power by the same variable having a different exponent to its power, then we need to subtract the components in the power.
Like,
\[\dfrac{{{a^m}}}{{{a^n}}} = {a^{(m - n)}}\;,\;where\;m,n\;are\;any\;number.\]
If \[m = 0\], then we can set:
\[{a^m} = {a^0}\].
Which implies that \[{a^0} = 1\].
Now, we can derive the above equation as \[\dfrac{{{a^m}}}{{{a^n}}} = \dfrac{1}{{{a^n}}},\;when\;m = 0.\]
Complete Step by Step Solution:
We have to find the positive exponent of \[5{x^{ - 4}}\].
Let's say, \[A = 5{x^{ - 4}}\].
As we know \[(0 - 4) = - 4\], we can rewrite the above expression.
Now, we can expand it into \[{a^{m - n}}\]form in following way:
\[A = 5 \times {x^{(0 - 4)}}\], where \[5\]is the coefficient of the above expression.
So, if we tally this form with the above formula, we can write the following equations:
\[ \Rightarrow a = x,\;m = 0,\;n = 4.\]
So, we can write the above expression in following way:
\[ \Rightarrow A = 5 \times \dfrac{{{x^0}}}{{{x^4}}}\].
We know that, \[{x^0} = 1\].
By putting this value in the above expression, we get:
\[ \Rightarrow A = 5 \times \dfrac{1}{{{x^4}}}\].
We can rewrite it in following way:
\[ \Rightarrow A = \dfrac{5}{{{x^4}}}\].
So, in the above expression every value of the exponent is positive.
Therefore, The required positive exponent form of the expression \[5{x^{ - 4}}\] is \[\dfrac{5}{{{x^4}}}\].
Note: Alternative way to solve:
We can also use the multiplication property of indices.
It is given that \[5{x^{ - 4}}\].
Now, we can rewrite \[( - 4)\] as \[( - 1) + ( - 1) + ( - 1) + ( - 1)\].
So, we can rewrite \[5{x^{ - 4}}\] as \[5{x^{( - 1) + ( - 1) + ( - 1) + ( - 1)}}\].
By using the multiplication rule of indices, we can write the following expression:
\[ \Rightarrow 5 \times {x^{ - 1}} \times {x^{ - 1}} \times {x^{ - 1}} \times {x^{ - 1}}\].
We know that, \[{a^{ - n}} = \dfrac{1}{{{a^n}}}\].
So, we can rewrite \[5 \times {x^{ - 1}} \times {x^{ - 1}} \times {x^{ - 1}} \times {x^{ - 1}}\] as following way:
\[ \Rightarrow 5 \times \left( {\dfrac{1}{x} \times \dfrac{1}{x} \times \dfrac{1}{x} \times \dfrac{1}{x}} \right)\]
By simplifying it, we get:
\[ \Rightarrow \dfrac{5}{{{x^4}}}\].
So, required positive exponent form \[\dfrac{5}{{{x^4}}}\].
Formula used: Multiplication rule of Indices:
If we multiply any variable \[n\]number of times, then we will put the addition of this \[n\]numbers into the power of that variable.
Like,
\[(m \times m \times m \times m \times ............n\;number\;of\;times)\]
\[ = {m^{(1 + 2 + 3 + 4 + ..... + n)}}\].
Division rule of Indices:
If we divide a variable having an exponent to its power by the same variable having a different exponent to its power, then we need to subtract the components in the power.
Like,
\[\dfrac{{{a^m}}}{{{a^n}}} = {a^{(m - n)}}\;,\;where\;m,n\;are\;any\;number.\]
If \[m = 0\], then we can set:
\[{a^m} = {a^0}\].
Which implies that \[{a^0} = 1\].
Now, we can derive the above equation as \[\dfrac{{{a^m}}}{{{a^n}}} = \dfrac{1}{{{a^n}}},\;when\;m = 0.\]
Complete Step by Step Solution:
We have to find the positive exponent of \[5{x^{ - 4}}\].
Let's say, \[A = 5{x^{ - 4}}\].
As we know \[(0 - 4) = - 4\], we can rewrite the above expression.
Now, we can expand it into \[{a^{m - n}}\]form in following way:
\[A = 5 \times {x^{(0 - 4)}}\], where \[5\]is the coefficient of the above expression.
So, if we tally this form with the above formula, we can write the following equations:
\[ \Rightarrow a = x,\;m = 0,\;n = 4.\]
So, we can write the above expression in following way:
\[ \Rightarrow A = 5 \times \dfrac{{{x^0}}}{{{x^4}}}\].
We know that, \[{x^0} = 1\].
By putting this value in the above expression, we get:
\[ \Rightarrow A = 5 \times \dfrac{1}{{{x^4}}}\].
We can rewrite it in following way:
\[ \Rightarrow A = \dfrac{5}{{{x^4}}}\].
So, in the above expression every value of the exponent is positive.
Therefore, The required positive exponent form of the expression \[5{x^{ - 4}}\] is \[\dfrac{5}{{{x^4}}}\].
Note: Alternative way to solve:
We can also use the multiplication property of indices.
It is given that \[5{x^{ - 4}}\].
Now, we can rewrite \[( - 4)\] as \[( - 1) + ( - 1) + ( - 1) + ( - 1)\].
So, we can rewrite \[5{x^{ - 4}}\] as \[5{x^{( - 1) + ( - 1) + ( - 1) + ( - 1)}}\].
By using the multiplication rule of indices, we can write the following expression:
\[ \Rightarrow 5 \times {x^{ - 1}} \times {x^{ - 1}} \times {x^{ - 1}} \times {x^{ - 1}}\].
We know that, \[{a^{ - n}} = \dfrac{1}{{{a^n}}}\].
So, we can rewrite \[5 \times {x^{ - 1}} \times {x^{ - 1}} \times {x^{ - 1}} \times {x^{ - 1}}\] as following way:
\[ \Rightarrow 5 \times \left( {\dfrac{1}{x} \times \dfrac{1}{x} \times \dfrac{1}{x} \times \dfrac{1}{x}} \right)\]
By simplifying it, we get:
\[ \Rightarrow \dfrac{5}{{{x^4}}}\].
So, required positive exponent form \[\dfrac{5}{{{x^4}}}\].
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE