
Resistance of wire is \[R\] and cross-section area is \[A\] now the area is changed to \[N\] times. What will be the new resistance?
Answer
504.9k+ views
Hint: Here, we have to use the formula for resistance and use the original formula for resistance and consider it as old resistance then for new resistance we have to use the same formula but different values as mentioned in the given conditions of the question.
Complete step by step answer:
Let us consider the definition of resistance as: Resistance of the material or a conductor is directly proportional to the length of the conductor and inversely proportional to the area of cross-section of the conductor. Mathematically,
\[R = \rho \dfrac{l}{A}\]
\[\rho \] is the proportionality constant and the resistivity of the conductor.
Thus, according to the given condition, the area of cross-section is changed to the \[N\] times of \[A\]. So, the formula for new resistance is given by:
\[R' = \rho \dfrac{l}{{NA}}\]
Where, \[R'\] is the new resistance, \[\rho \] is the resistivity of the conductor, \[l\] is the length of the conductor and \[A\] is the area of the conductor.
So, new resistance can be written as:
\[R' = \dfrac{1}{N}\left( {\rho \dfrac{l}{A}} \right)\]
\[ \Rightarrow R' = \dfrac{1}{N}R\]........…... (Since,\[R = \rho \dfrac{l}{A}\])
Thus the new resistance is given by:
\[\therefore R' = \dfrac{R}{N}\]
Hence, the new resistance is $\dfrac{R}{N}$.
Note:The resistance is discussed in the simple formula given above, we just have to consider the given conditions and apply them in the formula. Here, we observe that the new resistance is equal to the fraction of original resistance to that of the no. of times.
Complete step by step answer:
Let us consider the definition of resistance as: Resistance of the material or a conductor is directly proportional to the length of the conductor and inversely proportional to the area of cross-section of the conductor. Mathematically,
\[R = \rho \dfrac{l}{A}\]
\[\rho \] is the proportionality constant and the resistivity of the conductor.
Thus, according to the given condition, the area of cross-section is changed to the \[N\] times of \[A\]. So, the formula for new resistance is given by:
\[R' = \rho \dfrac{l}{{NA}}\]
Where, \[R'\] is the new resistance, \[\rho \] is the resistivity of the conductor, \[l\] is the length of the conductor and \[A\] is the area of the conductor.
So, new resistance can be written as:
\[R' = \dfrac{1}{N}\left( {\rho \dfrac{l}{A}} \right)\]
\[ \Rightarrow R' = \dfrac{1}{N}R\]........…... (Since,\[R = \rho \dfrac{l}{A}\])
Thus the new resistance is given by:
\[\therefore R' = \dfrac{R}{N}\]
Hence, the new resistance is $\dfrac{R}{N}$.
Note:The resistance is discussed in the simple formula given above, we just have to consider the given conditions and apply them in the formula. Here, we observe that the new resistance is equal to the fraction of original resistance to that of the no. of times.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

