
Relationship between $ {K_p}\; $ and $ {K_c}\; $ is as follows:
$ {K_p}\; = {{\text{K}}_{\text{c}}}{\left( {RT} \right)^{ - \vartriangle n}} $
if true enter $ 1 $, else enter $ 0 $.
Answer
493.8k+ views
Hint: $ {K_p}\; $ and $ {K_c}\; $ are the equilibrium constants for ideal type gas mixtures for reversible reactions. When concentration is expressed in terms of atmospheric pressure $ {K_p} $ is used. When concentration is expressed in terms of molarity $ {K_c} $ is used. We will derive the relation between $ {K_p}\; $ and $ {K_c}\; $ to see how they are related to each other.
Complete answer:
For deriving the relation between $ {K_p}\; $ and $ {K_c}\; $ , consider a simple reaction given below:
$ pP + qQ \to rR + sS $
In above reaction, ‘p’ mole of reactant ‘P’ reacts with ‘q’ mole of reactant ‘Q’ to give product ‘r’ mole of R and ‘s’ mole of S. here p, q, r, s are stoichiometric coefficients of P, Q, R, and S respectively.
$ {K_c}\; $ is the equilibrium constant associated with concentration. it is given by
$ {{\text{K}}_{\text{c}}} = \dfrac{{{{\left[ {\text{R}} \right]}^{\text{r}}}{{\left[ {\text{S}} \right]}^{\text{s}}}}}{{{{\left[ {\text{P}} \right]}^{\text{p}}}{{\left[ {\text{Q}} \right]}^{\text{q}}}}} $ …… ( $ 1 $ )
where, R is the molar concentration of product ‘R’, S is the molar concentration of product ‘S’, P is the molar concentration of reactant ‘P’, Q is the molar concentration of reactant ‘Q’.
Similarly,
$ {{\text{K}}_{\text{p}}} = \dfrac{{{{\left[ {{{\text{P}}_{\text{R}}}} \right]}^{\text{r}}}{{\left[ {{{\text{P}}_{\text{S}}}} \right]}^{\text{s}}}}}{{{{\left[ {{{\text{P}}_{\text{P}}}} \right]}^{\text{p}}}{{\left[ {{{\text{P}}_{\text{Q}}}} \right]}^{\text{q}}}}} $ ……… ( $ 2 $ )
where, $ {{\text{P}}_{\text{R}}} $ is the Partial pressure of product R, $ {{\text{P}}_{\text{S}}} $ is the Partial pressure of product S, $ {{\text{P}}_{\text{P}}} $ is the Partial pressure of reactant P, $ {{\text{P}}_{\text{Q}}} $ is the Partial pressure of reactant Q.
Ideal Gas Equation,
$ pV = nRT $ or $ {\text{p}} = \dfrac{{nRT}}{{\text{V}}} $ …….. ( $ 3 $ )
we know $ \dfrac{{\text{n}}}{{\text{V}}} $ is the formula of molarity now arranging equation ( $ 1 $ ) and ( $ 2 $ ) in ( $ 3 $ ) we get,
$ {{\text{P}}_{\text{R}}} = \left[ {\text{R}} \right]RT $
$ {{\text{P}}_{\text{S}}} = \left[ {\text{S}} \right]RT $
now for reactants P and Q
$ {{\text{P}}_{\text{P}}} = \left[ {\text{P}} \right]RT $
$ {{\text{P}}_{\text{Q}}} = \left[ {\text{Q}} \right]RT $
Substituting above $ 4 $ equations in equation ( $ 2 $ ) we get
$ {{\text{K}}_{\text{p}}} = \dfrac{{{{\left[ {\text{R}} \right]}^{\text{r}}}{{\left[ {\text{S}} \right]}^{\text{s}}}{{\left( {RT} \right)}^{\left( {{\text{r}} + {\text{s}}} \right)}}}}{{{{\left[ {\text{P}} \right]}^{\text{p}}}{{\left[ {\text{S}} \right]}^{\text{q}}}{{\left( {RT} \right)}^{\left( {{\text{p}} + {\text{q}}} \right)}}}} $
$ {{\text{K}}_{\text{p}}} = {{\text{K}}_{\text{c}}}{\left[ {RT} \right]^{\left( {{\text{r}} + {\text{s}}} \right) - \left( {{\text{p}} + {\text{q}}} \right)}} $
$ \left( {{\text{r}} + {\text{s}}} \right) - \left( {p + q} \right) $ signify change in moles of product and reactant, which can be represented by $ \vartriangle n $
so our relation becomes
$ {K_p}\; = {{\text{K}}_{\text{c}}}{\left( {RT} \right)^{\vartriangle n}} $
So given formula $ {K_p}\; = {{\text{K}}_{\text{c}}}{\left( {RT} \right)^{ - \vartriangle n}} $ is wrong.
Note:
Closely observe the variables representing concentration and partial pressure of each reactant and product as it could get very confusing. Also assign variables in a manner that did not confuse with some other quantity.
Complete answer:
For deriving the relation between $ {K_p}\; $ and $ {K_c}\; $ , consider a simple reaction given below:
$ pP + qQ \to rR + sS $
In above reaction, ‘p’ mole of reactant ‘P’ reacts with ‘q’ mole of reactant ‘Q’ to give product ‘r’ mole of R and ‘s’ mole of S. here p, q, r, s are stoichiometric coefficients of P, Q, R, and S respectively.
$ {K_c}\; $ is the equilibrium constant associated with concentration. it is given by
$ {{\text{K}}_{\text{c}}} = \dfrac{{{{\left[ {\text{R}} \right]}^{\text{r}}}{{\left[ {\text{S}} \right]}^{\text{s}}}}}{{{{\left[ {\text{P}} \right]}^{\text{p}}}{{\left[ {\text{Q}} \right]}^{\text{q}}}}} $ …… ( $ 1 $ )
where, R is the molar concentration of product ‘R’, S is the molar concentration of product ‘S’, P is the molar concentration of reactant ‘P’, Q is the molar concentration of reactant ‘Q’.
Similarly,
$ {{\text{K}}_{\text{p}}} = \dfrac{{{{\left[ {{{\text{P}}_{\text{R}}}} \right]}^{\text{r}}}{{\left[ {{{\text{P}}_{\text{S}}}} \right]}^{\text{s}}}}}{{{{\left[ {{{\text{P}}_{\text{P}}}} \right]}^{\text{p}}}{{\left[ {{{\text{P}}_{\text{Q}}}} \right]}^{\text{q}}}}} $ ……… ( $ 2 $ )
where, $ {{\text{P}}_{\text{R}}} $ is the Partial pressure of product R, $ {{\text{P}}_{\text{S}}} $ is the Partial pressure of product S, $ {{\text{P}}_{\text{P}}} $ is the Partial pressure of reactant P, $ {{\text{P}}_{\text{Q}}} $ is the Partial pressure of reactant Q.
Ideal Gas Equation,
$ pV = nRT $ or $ {\text{p}} = \dfrac{{nRT}}{{\text{V}}} $ …….. ( $ 3 $ )
we know $ \dfrac{{\text{n}}}{{\text{V}}} $ is the formula of molarity now arranging equation ( $ 1 $ ) and ( $ 2 $ ) in ( $ 3 $ ) we get,
$ {{\text{P}}_{\text{R}}} = \left[ {\text{R}} \right]RT $
$ {{\text{P}}_{\text{S}}} = \left[ {\text{S}} \right]RT $
now for reactants P and Q
$ {{\text{P}}_{\text{P}}} = \left[ {\text{P}} \right]RT $
$ {{\text{P}}_{\text{Q}}} = \left[ {\text{Q}} \right]RT $
Substituting above $ 4 $ equations in equation ( $ 2 $ ) we get
$ {{\text{K}}_{\text{p}}} = \dfrac{{{{\left[ {\text{R}} \right]}^{\text{r}}}{{\left[ {\text{S}} \right]}^{\text{s}}}{{\left( {RT} \right)}^{\left( {{\text{r}} + {\text{s}}} \right)}}}}{{{{\left[ {\text{P}} \right]}^{\text{p}}}{{\left[ {\text{S}} \right]}^{\text{q}}}{{\left( {RT} \right)}^{\left( {{\text{p}} + {\text{q}}} \right)}}}} $
$ {{\text{K}}_{\text{p}}} = {{\text{K}}_{\text{c}}}{\left[ {RT} \right]^{\left( {{\text{r}} + {\text{s}}} \right) - \left( {{\text{p}} + {\text{q}}} \right)}} $
$ \left( {{\text{r}} + {\text{s}}} \right) - \left( {p + q} \right) $ signify change in moles of product and reactant, which can be represented by $ \vartriangle n $
so our relation becomes
$ {K_p}\; = {{\text{K}}_{\text{c}}}{\left( {RT} \right)^{\vartriangle n}} $
So given formula $ {K_p}\; = {{\text{K}}_{\text{c}}}{\left( {RT} \right)^{ - \vartriangle n}} $ is wrong.
Note:
Closely observe the variables representing concentration and partial pressure of each reactant and product as it could get very confusing. Also assign variables in a manner that did not confuse with some other quantity.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

