
What is the rationalising factor of the given number? \[2 + \sqrt {7 + 2\sqrt {10} } \]
Answer
492.9k+ views
Hint: In order to solve this question, first we will simplify the expression \[\sqrt {7 + 2\sqrt {10} } \] . For this we will use the concept that if a given expression is of the form, \[\sqrt {p + q\sqrt r } \] and \[{p^2} - {q^2}r\] is a perfect square \[{s^2}\] then \[\sqrt {p + q\sqrt r } = \dfrac{{\sqrt {2p + 2s} }}{2} + \dfrac{{\sqrt {2p - 2s} }}{2}\] .We will substitute the values in the formula and simplify the expression. After that we will use the definition of rationalising factor to find the rationalising factor of the given number. The rationalising factor of a given number is the number by which it must be multiplied so that it becomes rational.
Complete step by step answer:
Given: \[2 + \sqrt {7 + 2\sqrt {10} } \]
Now, first of all we will simplify the expression \[\sqrt {7 + 2\sqrt {10} } \]
We know that
if a given expression is of the form, \[\sqrt {p + q\sqrt r } \] and \[{p^2} - {q^2}r\] is a perfect square \[{s^2}\]
then \[\sqrt {p + q\sqrt r } = \dfrac{{\sqrt {2p + 2s} }}{2} + \dfrac{{\sqrt {2p - 2s} }}{2}\]
In our problem, \[p = 7,{\text{ }}q = 2,{\text{ }}r = 10\]
So, \[{p^2} - {q^2}r = {7^2} - {2^2} \cdot \left( {10} \right)\]
\[ \Rightarrow {p^2} - {q^2}r = 49 - 40\]
\[ \Rightarrow {p^2} - {q^2}r = 9 = {s^2}\]
Taking square root, we get
\[s = 3\]
Thus, we get \[{p^2} - {q^2}r\] is a perfect square \[{s^2}\]
It means \[\sqrt {p + q\sqrt r } = \dfrac{{\sqrt {2p + 2s} }}{2} + \dfrac{{\sqrt {2p - 2s} }}{2}\]
Therefore, on substituting the values, we get
\[\sqrt {7 + 2\sqrt {10} } = \dfrac{{\sqrt {2\left( 7 \right) + 2\left( 3 \right)} }}{2} + \dfrac{{\sqrt {2\left( 7 \right) - 2\left( 3 \right)} }}{2}\]
\[ \Rightarrow \sqrt {7 + 2\sqrt {10} } = \dfrac{{\sqrt {14 + 6} }}{2} + \dfrac{{\sqrt {14 - 6} }}{2}\]
On adding the terms in the numerator, we get
\[ \Rightarrow \sqrt {7 + 2\sqrt {10} } = \dfrac{{\sqrt {20} }}{2} + \dfrac{{\sqrt 8 }}{2}\]
We can write
\[\sqrt {20} = \sqrt {4 \times 5} = 2\sqrt 5 \]
\[\sqrt 8 = \sqrt {2 \times 2 \times 2} = 2\sqrt 2 \]
Therefore, above equation becomes,
\[ \Rightarrow \sqrt {7 + 2\sqrt {10} } = \dfrac{{2\sqrt 5 }}{2} + \dfrac{{2\sqrt 2 }}{2}\]
On cancelling \[2\] from both numerator and denominator, we get
\[ \Rightarrow \sqrt {7 + 2\sqrt {10} } = \sqrt 5 + \sqrt 2 \]
Hence,
\[2 + \sqrt {7 + 2\sqrt {10} } {\text{ }} = 2 + \sqrt 5 + \sqrt 2 \]
Now we know that
Rationalising factor of a given number is the number by which it must be multiplied so that it becomes rational.
So, we have to find a number by which the number is multiplied so that it becomes rational.
Since, the number involves two square roots, a suitable radical conjugate is formed by multiplying the variants of the expression \[2 \pm \sqrt 5 \pm \sqrt 2 \] apart from the one we already have
i.e., \[\left( {2 + \sqrt 5 - \sqrt 2 } \right)\left( {2 - \sqrt 5 - \sqrt 2 } \right)\left( {2 - \sqrt 5 + \sqrt 2 } \right)\]
we know that
\[\left( {a + b} \right)\left( {a - b} \right) = {a^2} - {b^2}\]
Therefore, from the last two terms, we get
\[ = \left( {2 + \sqrt 5 - \sqrt 2 } \right)\left( {{{\left( {2 - \sqrt 5 } \right)}^2} - {{\left( {\sqrt 2 } \right)}^2}} \right)\]
Now we know that
\[{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab\]
Therefore, we get
\[ = \left( {2 + \sqrt 5 - \sqrt 2 } \right)\left( {4 + 5 - 4\sqrt 5 - 2} \right)\]
\[ = \left( {2 + \sqrt 5 - \sqrt 2 } \right)\left( {7 - 4\sqrt 5 } \right)\]
On multiplying we get
\[ = 7\left( {2 + \sqrt 5 - \sqrt 2 } \right) - 4\sqrt 5 \left( {2 + \sqrt 5 - \sqrt 2 } \right)\]
\[ = 14 + 7\sqrt 5 - 7\sqrt 2 - 8\sqrt 5 - 20 + 4\sqrt {10} \]
\[ = - 6 - \sqrt 5 - 7\sqrt 2 + 4\sqrt {10} \]
Note that this is negative, so let’s negate it to get the slightly more attractive radical conjugate
Therefore, we get
\[ = 6 + \sqrt 5 + 7\sqrt 2 - 4\sqrt {10} \]
which is the required rationalising factor of \[2 + \sqrt {7 + 2\sqrt {10} } \]
Note:
Students should always remember that the rationalising factor should be the smallest number which when multiplied by the given number gives a rational number.
As a check let’s multiply \[6 + \sqrt 5 + 7\sqrt 2 - 4\sqrt {10} \] and \[2 + \sqrt 5 + \sqrt 2 \]
i.e., \[\left( {6 + \sqrt 5 + 7\sqrt 2 - 4\sqrt {10} } \right)\left( {2 + \sqrt 5 + \sqrt 2 } \right)\]
\[ = 2\left( {6 + \sqrt 5 + 7\sqrt 2 - 4\sqrt {10} } \right) + \sqrt 5 \left( {6 + \sqrt 5 + 7\sqrt 2 - 4\sqrt {10} } \right) + \sqrt 2 \left( {6 + \sqrt 5 + 7\sqrt 2 - 4\sqrt {10} } \right)\]
\[ = \left( {12 + 2\sqrt 5 + 14\sqrt 2 - 8\sqrt {10} } \right) + \left( {6\sqrt 5 + 5 + 7\sqrt {10} - 20\sqrt 2 } \right) + \left( {6\sqrt 2 + \sqrt {10} + 14 - 8\sqrt 5 } \right)\]
\[ = 31\] which is a rational number
Hence, our answer is correct.
Complete step by step answer:
Given: \[2 + \sqrt {7 + 2\sqrt {10} } \]
Now, first of all we will simplify the expression \[\sqrt {7 + 2\sqrt {10} } \]
We know that
if a given expression is of the form, \[\sqrt {p + q\sqrt r } \] and \[{p^2} - {q^2}r\] is a perfect square \[{s^2}\]
then \[\sqrt {p + q\sqrt r } = \dfrac{{\sqrt {2p + 2s} }}{2} + \dfrac{{\sqrt {2p - 2s} }}{2}\]
In our problem, \[p = 7,{\text{ }}q = 2,{\text{ }}r = 10\]
So, \[{p^2} - {q^2}r = {7^2} - {2^2} \cdot \left( {10} \right)\]
\[ \Rightarrow {p^2} - {q^2}r = 49 - 40\]
\[ \Rightarrow {p^2} - {q^2}r = 9 = {s^2}\]
Taking square root, we get
\[s = 3\]
Thus, we get \[{p^2} - {q^2}r\] is a perfect square \[{s^2}\]
It means \[\sqrt {p + q\sqrt r } = \dfrac{{\sqrt {2p + 2s} }}{2} + \dfrac{{\sqrt {2p - 2s} }}{2}\]
Therefore, on substituting the values, we get
\[\sqrt {7 + 2\sqrt {10} } = \dfrac{{\sqrt {2\left( 7 \right) + 2\left( 3 \right)} }}{2} + \dfrac{{\sqrt {2\left( 7 \right) - 2\left( 3 \right)} }}{2}\]
\[ \Rightarrow \sqrt {7 + 2\sqrt {10} } = \dfrac{{\sqrt {14 + 6} }}{2} + \dfrac{{\sqrt {14 - 6} }}{2}\]
On adding the terms in the numerator, we get
\[ \Rightarrow \sqrt {7 + 2\sqrt {10} } = \dfrac{{\sqrt {20} }}{2} + \dfrac{{\sqrt 8 }}{2}\]
We can write
\[\sqrt {20} = \sqrt {4 \times 5} = 2\sqrt 5 \]
\[\sqrt 8 = \sqrt {2 \times 2 \times 2} = 2\sqrt 2 \]
Therefore, above equation becomes,
\[ \Rightarrow \sqrt {7 + 2\sqrt {10} } = \dfrac{{2\sqrt 5 }}{2} + \dfrac{{2\sqrt 2 }}{2}\]
On cancelling \[2\] from both numerator and denominator, we get
\[ \Rightarrow \sqrt {7 + 2\sqrt {10} } = \sqrt 5 + \sqrt 2 \]
Hence,
\[2 + \sqrt {7 + 2\sqrt {10} } {\text{ }} = 2 + \sqrt 5 + \sqrt 2 \]
Now we know that
Rationalising factor of a given number is the number by which it must be multiplied so that it becomes rational.
So, we have to find a number by which the number is multiplied so that it becomes rational.
Since, the number involves two square roots, a suitable radical conjugate is formed by multiplying the variants of the expression \[2 \pm \sqrt 5 \pm \sqrt 2 \] apart from the one we already have
i.e., \[\left( {2 + \sqrt 5 - \sqrt 2 } \right)\left( {2 - \sqrt 5 - \sqrt 2 } \right)\left( {2 - \sqrt 5 + \sqrt 2 } \right)\]
we know that
\[\left( {a + b} \right)\left( {a - b} \right) = {a^2} - {b^2}\]
Therefore, from the last two terms, we get
\[ = \left( {2 + \sqrt 5 - \sqrt 2 } \right)\left( {{{\left( {2 - \sqrt 5 } \right)}^2} - {{\left( {\sqrt 2 } \right)}^2}} \right)\]
Now we know that
\[{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab\]
Therefore, we get
\[ = \left( {2 + \sqrt 5 - \sqrt 2 } \right)\left( {4 + 5 - 4\sqrt 5 - 2} \right)\]
\[ = \left( {2 + \sqrt 5 - \sqrt 2 } \right)\left( {7 - 4\sqrt 5 } \right)\]
On multiplying we get
\[ = 7\left( {2 + \sqrt 5 - \sqrt 2 } \right) - 4\sqrt 5 \left( {2 + \sqrt 5 - \sqrt 2 } \right)\]
\[ = 14 + 7\sqrt 5 - 7\sqrt 2 - 8\sqrt 5 - 20 + 4\sqrt {10} \]
\[ = - 6 - \sqrt 5 - 7\sqrt 2 + 4\sqrt {10} \]
Note that this is negative, so let’s negate it to get the slightly more attractive radical conjugate
Therefore, we get
\[ = 6 + \sqrt 5 + 7\sqrt 2 - 4\sqrt {10} \]
which is the required rationalising factor of \[2 + \sqrt {7 + 2\sqrt {10} } \]
Note:
Students should always remember that the rationalising factor should be the smallest number which when multiplied by the given number gives a rational number.
As a check let’s multiply \[6 + \sqrt 5 + 7\sqrt 2 - 4\sqrt {10} \] and \[2 + \sqrt 5 + \sqrt 2 \]
i.e., \[\left( {6 + \sqrt 5 + 7\sqrt 2 - 4\sqrt {10} } \right)\left( {2 + \sqrt 5 + \sqrt 2 } \right)\]
\[ = 2\left( {6 + \sqrt 5 + 7\sqrt 2 - 4\sqrt {10} } \right) + \sqrt 5 \left( {6 + \sqrt 5 + 7\sqrt 2 - 4\sqrt {10} } \right) + \sqrt 2 \left( {6 + \sqrt 5 + 7\sqrt 2 - 4\sqrt {10} } \right)\]
\[ = \left( {12 + 2\sqrt 5 + 14\sqrt 2 - 8\sqrt {10} } \right) + \left( {6\sqrt 5 + 5 + 7\sqrt {10} - 20\sqrt 2 } \right) + \left( {6\sqrt 2 + \sqrt {10} + 14 - 8\sqrt 5 } \right)\]
\[ = 31\] which is a rational number
Hence, our answer is correct.
Recently Updated Pages
Master Class 8 Social Science: Engaging Questions & Answers for Success

Master Class 8 English: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 8 Maths: Engaging Questions & Answers for Success

Master Class 8 Science: Engaging Questions & Answers for Success

Master Class 7 English: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest States of India?

What is the theme or message of the poem The road not class 9 english CBSE

What are the major achievements of the UNO class 9 social science CBSE

Explain the importance of pH in everyday life class 9 chemistry CBSE

Differentiate between parenchyma collenchyma and sclerenchyma class 9 biology CBSE

Give 5 examples of refraction of light in daily life


