
Range of ${\sin ^2}\theta + {\cos ^4}\theta = $
A) $1 \leqslant A \leqslant 2$
B) $\dfrac{3}{4} \leqslant A \leqslant 1$
C) $\dfrac{{13}}{6} \leqslant A \leqslant 1$
D) None of these
Answer
557.4k+ views
Hint:
It is known that range of $ - 1 \leqslant \cos \theta \leqslant 1$. 1st we will convert $\sin \theta $ into $\cos \theta $ by using ${\sin ^2}\theta + {\cos ^2}\theta = 1$then ${\sin ^2}\theta + {\cos ^4}\theta = 1 - {\cos ^2}\theta + {\cos ^4}\theta $. After this we will convert this square form by complete square method. after that using range of $\cos \theta $ we will proceed further and convert it into ${\sin ^2}\theta + {\cos ^4}\theta $
Complete step by step solution:
${\sin ^2}\theta + {\cos ^4}\theta = $
We know that ${\sin ^2}\theta + {\cos ^2}\theta = 1$, substituting this in equation we get
$ \Rightarrow 1 - {\cos ^2}\theta + {\cos ^4}\theta $
We can also write it as
$ \Rightarrow 1 - 2 \times \dfrac{1}{2} \times {\cos ^2}\theta + {\cos ^4}\theta + \dfrac{1}{4} - \dfrac{1}{4}$
$ \Rightarrow {\left( {{{\cos }^2}\theta - \dfrac{1}{2}} \right)^2} + \dfrac{3}{4}$ $\left[ {\because {{\left( {a - b} \right)}^2} = {a^2} + {b^2} - 2ab} \right]$
It is known that
$ - 1 \leqslant \cos \theta \leqslant 1$
On squaring we get
$0 \leqslant {\cos ^2}\theta \leqslant 1$
Subtracting $\dfrac{1}{2}$ we get
$ - \dfrac{1}{2} \leqslant {\cos ^2}\theta - \dfrac{1}{2} \leqslant \dfrac{1}{2}$
Again, on squaring we get
$0 \leqslant {\left( {{{\cos }^2}\theta - \dfrac{1}{2}} \right)^2} \leqslant \dfrac{1}{4}$
Then adding $\dfrac{3}{4}$ we get
$\dfrac{3}{4} \leqslant {\left( {{{\cos }^2}\theta - \dfrac{1}{2}} \right)^2} + \dfrac{3}{4} \leqslant 1$
There for range of ${\sin ^2}\theta + {\cos ^4}\theta = $ $\dfrac{3}{4} \leqslant A \leqslant 1$
Hence, option B is the correct option.
Note:
Point to remember are, in these types of questions we will convert all trigonometric ratios in a single form. Range of $ - 1 \leqslant \cos \theta \leqslant 1$, $ - 1 \leqslant \sin \theta \leqslant 1$. While converting division should be avoided as far as possible it will reduce the possible value.
It is known that range of $ - 1 \leqslant \cos \theta \leqslant 1$. 1st we will convert $\sin \theta $ into $\cos \theta $ by using ${\sin ^2}\theta + {\cos ^2}\theta = 1$then ${\sin ^2}\theta + {\cos ^4}\theta = 1 - {\cos ^2}\theta + {\cos ^4}\theta $. After this we will convert this square form by complete square method. after that using range of $\cos \theta $ we will proceed further and convert it into ${\sin ^2}\theta + {\cos ^4}\theta $
Complete step by step solution:
${\sin ^2}\theta + {\cos ^4}\theta = $
We know that ${\sin ^2}\theta + {\cos ^2}\theta = 1$, substituting this in equation we get
$ \Rightarrow 1 - {\cos ^2}\theta + {\cos ^4}\theta $
We can also write it as
$ \Rightarrow 1 - 2 \times \dfrac{1}{2} \times {\cos ^2}\theta + {\cos ^4}\theta + \dfrac{1}{4} - \dfrac{1}{4}$
$ \Rightarrow {\left( {{{\cos }^2}\theta - \dfrac{1}{2}} \right)^2} + \dfrac{3}{4}$ $\left[ {\because {{\left( {a - b} \right)}^2} = {a^2} + {b^2} - 2ab} \right]$
It is known that
$ - 1 \leqslant \cos \theta \leqslant 1$
On squaring we get
$0 \leqslant {\cos ^2}\theta \leqslant 1$
Subtracting $\dfrac{1}{2}$ we get
$ - \dfrac{1}{2} \leqslant {\cos ^2}\theta - \dfrac{1}{2} \leqslant \dfrac{1}{2}$
Again, on squaring we get
$0 \leqslant {\left( {{{\cos }^2}\theta - \dfrac{1}{2}} \right)^2} \leqslant \dfrac{1}{4}$
Then adding $\dfrac{3}{4}$ we get
$\dfrac{3}{4} \leqslant {\left( {{{\cos }^2}\theta - \dfrac{1}{2}} \right)^2} + \dfrac{3}{4} \leqslant 1$
There for range of ${\sin ^2}\theta + {\cos ^4}\theta = $ $\dfrac{3}{4} \leqslant A \leqslant 1$
Hence, option B is the correct option.
Note:
Point to remember are, in these types of questions we will convert all trigonometric ratios in a single form. Range of $ - 1 \leqslant \cos \theta \leqslant 1$, $ - 1 \leqslant \sin \theta \leqslant 1$. While converting division should be avoided as far as possible it will reduce the possible value.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

