Answer
Verified
453.6k+ views
Hint: In this question, we are given a value in degrees and minutes. Firstly, we will convert it only into degrees to simplifying our answer. After that, we will use the formula of converting $180{}^\circ $ to radians and use it to find radian values of $60{}^\circ 30'$ using the unitary method also. Formula for changing degrees to radian is given as $180{}^\circ ={{\pi }^{c}}$.
Complete step by step answer:
Here, we are given a value $60{}^\circ 30'$ which is in degrees and minutes. We have to find its value in radians. For this, let us first change minutes into degrees.
As we know, sixty minutes make one degree. Therefore, $60'=1{}^\circ $.
We are given $30'$, therefore $30{}^\circ =\dfrac{1}{2}'$.
Value given is $60{}^\circ 30'$. Hence, value purely in degrees becomes $60{}^\circ +\dfrac{1}{2}{}^\circ $.
Taking LCM, we get $\dfrac{121}{2}{}^\circ $. Hence, we have converted $60{}^\circ 30'$ into degrees only to easily find our answer.
Now we will use the formula for converting degrees to radians to convert $\dfrac{121}{2}{}^\circ $.
Formula for converting degrees to radians is given by –
$180{}^\circ ={{\pi }^{c}}$
Using unitary method,
$1{}^\circ ={{\left( \dfrac{\pi }{180} \right)}^{c}}$
For $\left( \dfrac{121}{2} \right){}^\circ $, we get ${{\left( \dfrac{121}{2}\times \dfrac{\pi }{180} \right)}^{c}}$
Solving the above answer, we get ${{\left( \dfrac{121\pi }{360} \right)}^{c}}$
Hence, we have converted $60{}^\circ 30'$ into radians which gives us answer as ${{\left( \dfrac{121\pi }{360} \right)}^{c}}$
So, the correct answer is “Option B”.
Note: Students should know that $180{}^\circ ={{\pi }^{c}}$ and not $1{}^\circ ={{\pi }^{c}}$. They should always learn these formulas for solving faster and easily. They should take care while converting minutes into degrees. Don’t forget that $60$ minutes combine to become $1{}^\circ $. After converting minutes into degrees, they should be added to the given degrees. In degree, $\pi $ gives us the value as $180{}^\circ $ whereas in radian, it gives us the value as $\dfrac{22}{7}$.
Complete step by step answer:
Here, we are given a value $60{}^\circ 30'$ which is in degrees and minutes. We have to find its value in radians. For this, let us first change minutes into degrees.
As we know, sixty minutes make one degree. Therefore, $60'=1{}^\circ $.
We are given $30'$, therefore $30{}^\circ =\dfrac{1}{2}'$.
Value given is $60{}^\circ 30'$. Hence, value purely in degrees becomes $60{}^\circ +\dfrac{1}{2}{}^\circ $.
Taking LCM, we get $\dfrac{121}{2}{}^\circ $. Hence, we have converted $60{}^\circ 30'$ into degrees only to easily find our answer.
Now we will use the formula for converting degrees to radians to convert $\dfrac{121}{2}{}^\circ $.
Formula for converting degrees to radians is given by –
$180{}^\circ ={{\pi }^{c}}$
Using unitary method,
$1{}^\circ ={{\left( \dfrac{\pi }{180} \right)}^{c}}$
For $\left( \dfrac{121}{2} \right){}^\circ $, we get ${{\left( \dfrac{121}{2}\times \dfrac{\pi }{180} \right)}^{c}}$
Solving the above answer, we get ${{\left( \dfrac{121\pi }{360} \right)}^{c}}$
Hence, we have converted $60{}^\circ 30'$ into radians which gives us answer as ${{\left( \dfrac{121\pi }{360} \right)}^{c}}$
So, the correct answer is “Option B”.
Note: Students should know that $180{}^\circ ={{\pi }^{c}}$ and not $1{}^\circ ={{\pi }^{c}}$. They should always learn these formulas for solving faster and easily. They should take care while converting minutes into degrees. Don’t forget that $60$ minutes combine to become $1{}^\circ $. After converting minutes into degrees, they should be added to the given degrees. In degree, $\pi $ gives us the value as $180{}^\circ $ whereas in radian, it gives us the value as $\dfrac{22}{7}$.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Sound waves travel faster in air than in water True class 12 physics CBSE
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE