
Question- Two water taps together can fill a tank in $9\dfrac{3}{8}$ hours. The tap of larger diameter takes 10 hours less than the smaller one to fill the tank separately. Find the time (in hours) in which a tap of smaller diameter can separately fill the tank.
(A) 25
(B) $\dfrac{{ - 25}}{4}$
(C) 24
(D) $\dfrac{{25}}{4}$
Answer
610.8k+ views
Hint- Here, we will be using the concept of how much part of the tank is filled in one hour.
Let us assume that the tap with smaller diameter can separately fill the tank in $x$ hours.
According to the problem statement it is given that the tap with larger diameter can separately fill the tank in $\left( {x - 10} \right)$ hours.
Also, given that both the taps can together fill the tank in $9\dfrac{3}{8} = \dfrac{{\left( {8 \times 9} \right) + 3}}{8} = \dfrac{{75}}{8}$ hours.
So, the tap with a smaller diameter can fill $\dfrac{1}{x}$ part of the tank in 1 hour. Similarly, the tap with a larger diameter can fill $\dfrac{1}{{\left( {x - 10} \right)}}$ part of the tank in 1 hour. Also, both the taps fill $\dfrac{8}{{75}}$ part of the tank in 1 hour.
Then, \[
\dfrac{1}{x} + \dfrac{1}{{\left( {x - 10} \right)}} = \dfrac{8}{{75}} \Rightarrow \dfrac{{x - 10 + x}}{{x\left( {x - 10} \right)}} = \dfrac{8}{{75}} \Rightarrow \dfrac{{2x - 10}}{{x\left( {x - 10} \right)}} = \dfrac{8}{{75}} \Rightarrow 75\left( {2x - 10} \right) = 8x\left( {x - 10} \right) \\
\Rightarrow 150x - 750 = 8{x^2} - 80x \Rightarrow 8{x^2} - 230x + 750 = 0 \Rightarrow 4{x^2} - 115x + 375 = 0 \\
\Rightarrow 4{x^2} - 100x - 15x + 375 = 0 \Rightarrow 4x\left( {x - 25} \right) - 15\left( {x - 25} \right) = 0 \Rightarrow \left( {x - 25} \right)\left( {4x - 15} \right) = 0 \\
\]
Either $x = 25$ or $4x = 15 \Rightarrow x = \dfrac{{15}}{4}$
When $x = 25$, $\left( {x - 10} \right) = 25 - 10 = 15$ and when $x = \dfrac{{15}}{4}$, $\left( {x - 10} \right) = \dfrac{{15}}{4} - 10 = \dfrac{{15 - 40}}{4} = - \dfrac{{25}}{4}$
Since, the time can never be negative so $x = \dfrac{{15}}{4}$ is rejected.
Hence, $x = 25$ and $\left( {x - 10} \right) = 15$
The tap with smaller diameter can separately fill the tank in 25 hours and the tap with larger diameter can separately fill the tank in 15 hours.
Therefore, option A is correct.
Note- In these types of problems, the concept of part of the work done (here it is filling the tank) in one hour is utilized to obtain an equation in one variable so that we can solve for it.
Let us assume that the tap with smaller diameter can separately fill the tank in $x$ hours.
According to the problem statement it is given that the tap with larger diameter can separately fill the tank in $\left( {x - 10} \right)$ hours.
Also, given that both the taps can together fill the tank in $9\dfrac{3}{8} = \dfrac{{\left( {8 \times 9} \right) + 3}}{8} = \dfrac{{75}}{8}$ hours.
So, the tap with a smaller diameter can fill $\dfrac{1}{x}$ part of the tank in 1 hour. Similarly, the tap with a larger diameter can fill $\dfrac{1}{{\left( {x - 10} \right)}}$ part of the tank in 1 hour. Also, both the taps fill $\dfrac{8}{{75}}$ part of the tank in 1 hour.
Then, \[
\dfrac{1}{x} + \dfrac{1}{{\left( {x - 10} \right)}} = \dfrac{8}{{75}} \Rightarrow \dfrac{{x - 10 + x}}{{x\left( {x - 10} \right)}} = \dfrac{8}{{75}} \Rightarrow \dfrac{{2x - 10}}{{x\left( {x - 10} \right)}} = \dfrac{8}{{75}} \Rightarrow 75\left( {2x - 10} \right) = 8x\left( {x - 10} \right) \\
\Rightarrow 150x - 750 = 8{x^2} - 80x \Rightarrow 8{x^2} - 230x + 750 = 0 \Rightarrow 4{x^2} - 115x + 375 = 0 \\
\Rightarrow 4{x^2} - 100x - 15x + 375 = 0 \Rightarrow 4x\left( {x - 25} \right) - 15\left( {x - 25} \right) = 0 \Rightarrow \left( {x - 25} \right)\left( {4x - 15} \right) = 0 \\
\]
Either $x = 25$ or $4x = 15 \Rightarrow x = \dfrac{{15}}{4}$
When $x = 25$, $\left( {x - 10} \right) = 25 - 10 = 15$ and when $x = \dfrac{{15}}{4}$, $\left( {x - 10} \right) = \dfrac{{15}}{4} - 10 = \dfrac{{15 - 40}}{4} = - \dfrac{{25}}{4}$
Since, the time can never be negative so $x = \dfrac{{15}}{4}$ is rejected.
Hence, $x = 25$ and $\left( {x - 10} \right) = 15$
The tap with smaller diameter can separately fill the tank in 25 hours and the tap with larger diameter can separately fill the tank in 15 hours.
Therefore, option A is correct.
Note- In these types of problems, the concept of part of the work done (here it is filling the tank) in one hour is utilized to obtain an equation in one variable so that we can solve for it.
Recently Updated Pages
Master Class 8 Social Science: Engaging Questions & Answers for Success

Master Class 8 Maths: Engaging Questions & Answers for Success

Master Class 8 Science: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 8 English: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Trending doubts
What is BLO What is the full form of BLO class 8 social science CBSE

Citizens of India can vote at the age of A 18 years class 8 social science CBSE

Full form of STD, ISD and PCO

Right to vote is a AFundamental Right BFundamental class 8 social science CBSE

Summary of the poem Where the Mind is Without Fear class 8 english CBSE

What are gulf countries and why they are called Gulf class 8 social science CBSE

